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1. (a) Consider the finite element (K,P,N ) given by
1. K is the 1 × 1 square, with bottom-left corner at (0, 0).
2. P is the polynomial space spanned by {1, x, y, xy}.
3. N = (N1, N2, N3, N4) where Ni(p) = p(zi) and (z1, z2, z3, z4) are the four corners of

the square.
Find the nodal basis for this finite element. (You may use a computational linear algebra
package such as Numpy or Matlab to invert matrices but you must write the matrices that
you are computing with in your solution.) (8 marks)

(b) Consider a finite element (K,P,N ) with
1. K is the triangle with vertices at z1 = (0, 0), z2 = (1, 0), and z3 = (0, 1).
2. P is the polynomial space spanned by {1, x, y, xy(1 − x− y)},

and nodal basis

ψ1 = x− 9xy(1 − x− y), ψ2 = y − 9xy(1 − x− y),
ψ3 = 1 − x− y − 9xy(1 − x− y), ψ4 = 27xy(1 − x− y). (1)

(i) Find a set of nodal variables N that corresponds to this nodal basis, justifying your
answer. (6 marks)

(ii) Provide a C0 geometric decomposition for this element, explaining why it has the specified
continuity. (6 marks)

(Total: 20 marks)
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2. In this question we consider the Poisson equation

−∇2u = f, (2)

on a convex domain Ω with u = 0 on ∂Ω. We assume that f is such that u ∈ H2(Ω) but
u /∈ H3(Ω).

(a) Consider Theorem 5.30 of the notes. Explain why this theorem is not sufficient for estimating
the convergence rate for finite element discretisation for this problem when k = 2.

(6 marks)
(b) For i = 1, propose and prove a modification of Lemma 5.28 for this case.

(7 marks)
(c) For i = 1, propose and justify (referring to existing proofs in the notes) a modification of

Theorem 5.30 for this case. Comment on the difference in the estimate compared to the case
u ∈ H3(Ω). (7 marks)

(Total: 20 marks)
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3. (a) Write a finite element variational problem for the following equation,

−∇2u = 0, ∂u

∂n
= g on ∂Ω, (3)

describing the types of finite element spaces that should be used to ensure a unique solution.
(6 marks)

(b) Consider the finite element discretisation in the case where Ω is a 1 × 1 square and
g = exp(cos(x) cos(y+x)). Explain why your variational problem is not possible to implement
exactly on a computer when using numerical quadrature, and propose a modification that is.

(6 marks)
(c) Adjust the statement and proof of Céa’s Lemma to accommodate your modification from

(b), and comment on the conditions for convergence of the finite element solution to
the exact solution as the mesh is refined. (Hints: start from the triangle inequality for
∥u− v + v − uh∥H1(Ω) for v ∈ Vh and then work with the term ∥v − uh∥H1(Ω).)

(8 marks)

(Total: 20 marks)
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Figure 1: Domain for Question 4.

4. In this question we consider the domain displayed in Figure 1. The domain Ω is the entire square
area shaded grey, with outer boundary ∂Ω shown as a continuous black line. Inside the domain is
a smaller square, denoted Ω0, with boundary Γ, shown as a dashed black line. We define Ω1 to be
the complement of Ω0 in Ω.
We consider the following problem: find u such that

−∇2u = 0, in Ω0 and Ω1, (4)
u = 0, on ∂Ω, (5)

∂u

∂n

∣∣∣∣∣
∂Ω0

+ ∂u

∂n

∣∣∣∣∣
∂Ω1∩Γ

= 2, (6)

where for a domain Ωi, ∂u
∂n

|Ωi
is the value of the normal component of the derivative restricted

to Ωi, using the outward pointing normal to ∂Ωi. Note that since the outward pointing normals
to ∂Ω0 and ∂Ω1 ∩ Γ are equal and opposite, this condition on Γ indicates a discontinuity in the
normal derivative of u.

(a) Using the continuous Lagrange finite element space of degree k, formulate a finite element
discretisation for this problem. (6 marks)

(b) Show that the finite element discretisation has a unique solution, and provide a constant γ
such that the finite element solution satisfies

∥uh∥H1(Ω) ≤ γ, (7)

independently of h. You may quote results from the course notes without proof. (8 marks)
(c) Let uh be the numerical solution on a mesh consisting of squares subdivided into right angled

triangles, with square edge length h, and let u be the exact solution of the problem. Discuss
the applicability of the bound on ∥uh − u∥H1(Ω) that we studied in the course. (6 marks)

(Total: 20 marks)
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Figure 2: Example function values for Question 5.

5. (a) Let V = (H1(Ω))2 and Q = L̊2(Ω), where Ω is a convex polygonal domain. Let
b : V ×Q → R be the bilinear form

b(v, q) =
∫

Ω
q∇ · v dx. (8)

Assuming the result that the divergence is surjective from V to Q, show that b satisfies the
inf-sup condition

inf
q∈Q

sup
v∈V

b(v, q)
∥v∥V ∥q∥Q

≥ β, (9)

for some constant β.
(5 marks)

(b) Define the operator δ : Q → V by∫
Ω
w · δq dx = b(w, q), ∀w ∈ V. (10)

Show that the kernel of δ, Ker(δ), is empty. (Hint: find a suitable choice of test function.)
(5 marks)

(c) Let Vh ⊂ V and Qh ⊂ Q be finite element spaces chosen for the discretisation of Stokes’
equation. Let Πh : V → Vh satisfy condition 1 of Fortin’s trick, i.e.

b(v − Πhv, q) = 0, ∀v ∈ V, q ∈ Qh. (11)

Define the discrete operator δh : Qh → Vh by∫
Ω
w · δhq dx = b(w, q), ∀w ∈ Vh. (12)

Show that Ker(δh) ⊆ Ker(δ).
(5 marks)

(Question continues on the following page.)



(d) Consider a mesh consisting of squares subdividing into right angle triangles by joining the
top left vertex and the bottom right vertex of each square, and consider the discretisation
for Stokes with continuous linear Lagrange elements for each component of the velocity and
continuous linear Lagrange elements for the pressure.
By considering the function p ∈ Qh taking vertex values in an alternating pattern as indicated
in Figure 2, show that Ker(δh) ̸⊆ Ker(δ) in this case.
Do Vh and Qj satisfy condition 1 of Fortin’s trick? (5 marks)

(Total: 20 marks)
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