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sim. seen ⇓1. (a) The Vandermonde matrix and its inverse are

V =


1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1

 , V −1 =


1 −1 −1 1

0 1 0 −1

0 0 1 −1

0 0 0 1

 , (1)

which can be computed by hand by e.g. doing back-substitution on the columns

of the identity matrix. The basis is then

ψ1(x, y) = 1− x− y + xy = (1− x)(1− y), (2)

ψ2(x, y) = x− xy = x(1− y), (3)

ψ3(x, y) = y − xy = y(1− x), (4)

ψ4(x, y) = xy. (5)

8, A

unseen ⇓
(b) (i) Suitable nodal variables are Ni(p) = p(zi) where z1 = (1, 0), z2 = (0, 1),

z3 = (0, 0), z4(1/3, 1/3).

We can check that the basis is a nodal one for these nodes by noticing that

the spanning set for P is the linear functions plus a cubic “bubble” function

that vanishes on the triangle vertices (and the edges). Thus to make a nodal

basis for our nodal variables, the basis functions 1 to 3 can just be the usual

linear basis functions (that are equal to 1 on the corresponding vertex and 0

at all the others) plus a scalar multiple of the bubble function so that they

vanish at z4. The bubble vanishes at all the vertices so it just needs to be

scaled appropriately to take the value 1 at z4 as required. 6, A

sim. seen ⇓(ii) We assign Ni to vertex zi for i = 1, 2, 3, and the bubble function the entire

cell. This is a C0 geometric decomposition because: (1) the value at each

vertex can be obtained from the nodal variable assigned to that vertex (since

it is just point evaluation at the vertex), (2) the value at each edge can be

obtained from the nodal variables assigned to the closure of the edge, which

is just vertex values at each end in this case, and the function is linear when

restricted to an edge. 6, B
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unseen ⇓2. (a) The theorem is insufficient because |u|H3(K1) is unbounded, so it doesn’t provide

any bound on the error.
6, B

sim. seen ⇓
(b) The appropriate statement is (under the same conditions as 5.28 but with u ∈

H2(K1), k = 3),

|IK1u− u|H1(K1) ≤ C1|u|H2(K1). (6)

To prove it,

|IK1u− u|H1(K1) ≤ ‖Q3,Bu− u‖2H1(K1) + ‖IK1(u−Q3,Bu)‖2H1(K1) (7)

≤ (1 + C2)|u|2H2(K1), (8)

where Q3,B is the degree k averaged Taylor polynomial over a ball B inside K1 but

as large as possible, and where we used Lemmas 3.22 and Corollary 3.16. 7, B

(c) The appropriate statement is (under the same conditions as 5.30 but with u ∈
H2(Ω))

|IKu− u|H1(Ω) ≤ Ch|u|H2(Ω). (9)

To show this, note that we can obtain the local estimate

|IKu− u|H1(K) ≤ CKd|u|Hk+1(K), (10)

by following the steps in the proof but with k replaced by 1. Then the same

technique of summing over all the cells gives the global result. 7, C
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sim. seen ⇓3. (a) To derive the variational form, we multiply by a test function v and integrate by

parts as usual to get ∫
Ω
∇v · ∇udx−

∫
∂Ω
v
∂u

∂n︸︷︷︸
=g

dS = 0, (11)

so a suitable variational form is to find v ∈ V̄h such that∫
Ω
∇v · ∇udx =

∫
∂Ω
vg dS, ∀v ∈ V̄h, (12)

where V̄h is the subspace of Vh of functions that integrate to zero, and Vh is some

choice of C0 finite element space. 6, A

unseen ⇓
(b) The issue is that the integrals are not tractable in general, so we can’t evaluate

the RHS of the problem. A possible modification is to interpolate g to Vh in the

boundary resulting in gh, and solve the perturbed problem∫
Ω
∇v · ∇udx =

∫
∂Ω
vgh dS, ∀v ∈ V̄h. (13)

6, D

unseen ⇓
(c) The modification to Céa’s Lemma is

‖u− uh‖H1(Ω) ≤ (1 +M/γ) sup
v∈Vh

‖u− v‖H1(Ω) +
C

γ
‖g − gh‖L2(∂Ω), (14)

so there are now two terms, a best approximation term of u in Vh, and an

approximation error term for gh.

To prove it, following the steps of Céa’s Lemma, we take a test function v ∈ Vh in

both the exact and approximate equation, and compute the difference, to yield

a(u− uh, v) =

∫
∂Ω
v(g − gh) dS, ∀v ∈ Vh. (15)

Then we use coercivity to write (for any v ∈ Vh)

γ‖uh − v‖H1(Ω) ≤ a(uh − v, uh − v), (16)

= a(uh − u, uh − v) + a(u− v, uh − v), (17)

=

∫
∂Ω

(uh − v)(gh − g) dS + a(u− v, uh − v), (18)

≤ C‖uh − v‖H1(Ω)‖gh − g‖L2(∂Ω) +M‖u− v‖H1(Ω)‖uh − v‖H1(Ω),

(19)

where C is the constant in the trace inequality and M is the continuity constant

of the bilinear form a(u, v). Then, dividing by ‖uh − v‖H1(Ω) gives

γ‖uh − v‖2H1(Ω) ≤ C‖gh − g‖L2(∂Ω) +M‖u− v‖H1(Ω). (20)

Then, combining with the triangle inequality, we get

‖u− uh‖H1(Ω) ≤ ‖u− v‖H1(Ω) + ‖uh − v‖H1(Ω), (21)

≤ (1 +M/γ)‖u− v‖H1(Ω) +
C

γ
‖g − gh‖L2(∂Ω), (22)

and minimisation over v gives the result. 8, D
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unseen ⇓4. (a) Multiplying by a test function v that vanishes on the exterior boundary and

integrating by parts separately in Ω1 and Ω2 gives∫
Ω
∇v · ∇udx−

∫
Γ
v

(
∂u

∂n
|∂Ω1 +

∂u

∂n
|∂Ω2∩Γ

)
dS = 0, (23)

and substitution of the boundary condition gives the variational problem: find

uh ∈ Vh such that ∫
Ω
∇v · ∇uh dx = 2

∫
Γ
v dS, ∀v ∈ Vh. (24)

6, A

sim. seen ⇓
(b) We are in the case of Theorem 4.38, so we just need to check continuity of the

linear form according to

F [v] = 2

∫
Γ
v dS ≤ ‖v‖L2(Γ)2|Γ| ≤ ‖v‖H1(Ω0)2|Γ| ≤ ‖v‖H1(Ω)2|Γ|. (25)

where we have used the trace theorem for continuous finite elements (Theorem

4.4), and |Γ| =
∫

Γ dS. Hence F is continuous. 8, A

unseen ⇓
(c) The bound studied in the course is

‖uh − u‖H1(Ω) ≤ h|u|H2(Ω), (26)

but the solution has a jump in the first derivative across Γ, so |u|H2(Ω) is not finite,

so the bound does not imply convergence of the numerical solution as h→ 0.
6, C
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unseen ⇓5. (a) The map is surjective, so there exists v ∈ V such that q = ∇ · v for all q ∈ Q.

Hence, using the Riesz Representation Theorem, for all F ∈ Q′, there exists qF
such that

F [p] =

∫
Ω
pqF dx, ∀p ∈ Q. (27)

So, for all F ∈ Q′, there exists v ∈ V such that

b(v, p) =

∫
Ω
∇ · vpdx = F [p], ∀p ∈ Q. (28)

In other words, for all F ∈ Q′ there exists v such that Bv = F , which means that

B is surjective. Then, from the notes, this implies the inf-sup condition. 5, M

unseen ⇓
(b) Let q ∈ Ker(δ), i.e. δq = 0. Taking w such that ∇ · w = q, we have

0 =

∫
Ω
∇ · wq dx =

∫
Ω
q2 dx =⇒ q = 0. (29)

5, M

unseen ⇓
(c) Let q ∈ Ker(δh). Then for w ∈ V ,∫

Ω
w · δq dx = b(w, q) = b(Πhw, q), (30)

=

∫
Ω

Πhw · δhq dx = 0, (31)

so q ∈ Ker(δ) as required. 5, M

unseen ⇓
(d) Considering p ∈ Qh having a pattern of the type given in Figure 2, it suffices to

consider b(w, p) for w being basis functions associated with vertices in the interior

of the mesh, which span Vh (because of the zero boundary condition). The support

of w consists of 6 triangles with symmetry about a diagonal line from top-left to

bottom-right. The divergence of w is antisymmetric about that line, whilst p is

symmetric, so the integral b(w, p) vanishes. Hence, p ∈ ker(δh). The previous

result says that the Fortin Trick assumptions imply that the ker(δh) is empty,

Vh, Qh must fail to satisfy the Fortin Trick assumptions. 5, M
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Review of mark distribution:

Total A marks: 34 of 32 marks

Total B marks: 19 of 20 marks

Total C marks: 13 of 12 marks

Total D marks: 14 of 16 marks

Total marks: 100 of 80 marks

Total Mastery marks: 20 of 20 marks
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