
1. This question is about the equation

c„ + u · Ò„ ≠ ‘Ò2
„ = f on �,

ˆ„

ˆn
= 0 on ˆ�, (1)

where:

– � is a d-dimensional polygonal domain with boundary ˆ�,
– c > 0,
– f is a known function,
– u œ C

1,Œ(�)d is a known vector-valued function satisfying Ò · u = 0, and u · n = 0 on ˆ�.
– |u|Œ = maxxœ� |u(x)| = C0 < Œ.

(a) Derive a weak formulation of this equation for a solution „ œ H
1(�) of the form

a(q, „) = F („), ’H
1(�). (2)

[5 marks]

Solution: UNSEEN
Multiplying by a test function q and integrating by parts, we obtain

⁄

�
cq„ ≠ Ò · (uq)„ + ‘Òq · Ò„ d x =

⁄

�
fq d x, ’q œ H

1(�).

Equal credit for the formulation without integrating by parts in the advection term (they are

equivalent).

(b) Obtain estimates for the continuity and coercivity constants of a(·, ·).

[10 marks]

Solution: UNSEEN
From Cauchy-Schwarz,

|a(q, „)| =
⁄

�
cq„ ≠ q„Ò · u ≠ „u · Òq + ‘Òq · Ò„ d x,

Æ cÎqÎL2(�)Î„ÎL2(�) + C0ÎÒqÎL2(�)Î„ÎL2(�) + ‘ÎÒqÎL2(�)ÎÒ„ÎL2(�),

Æ (c + C0 + ‘) ÎqÎH1(�)Î„ÎH1(�),

so the continuity constant is c + C0 + ‘.

To compute the coercivity constant, first note that the advection term is skew-symmetric,

since
⁄

�
Ò · (uq)„ d x =

⁄

�
Ò · u¸ ˚˙ ˝

=0
q„ + (u · Òq)„ d x,

= ≠
⁄

�
Ò · (u„)q d x,

after integrating by parts. Hence,

a(„, „) =
⁄

�
c„

2 + ‘|Ò„|2 d x,

> min(c, ‘)Î„ÎH1(�),

so the coercivity constant is min(c, ‘).



(c) What happens to the H
1 norm of the error in the P

1 finite element approximation of this
problem as ‘ æ 0? Justify your answer.

[5 marks]

Solution: UNSEEN
From Céa’s Lemma, we have

Î„h ≠ „ÎH1(�) Æ c + C0 + ‘

‘
Î„Î2

H1(�),

(assuming that c > ‘), which tends to infinity as ‘ æ 0. Hence the error can be arbitrarily

large in that limit.
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2. (a) For a ball B in a triangle K, the averaged Taylor polynomial of a function u œ H
k(K) of

degree k is defined by

Qk,Bu(x) = 1
|B|

⁄

B

ÿ

|–|Æk

D
–
u(y)(x ≠ y)–

–! d y. (3)

For |—| Æ k show that
D

—
Qk,Bu(x) = Qk≠|—|,BD

—
u(x). (4)

[8 marks]

Solution: SEEN
For continuous functions u œ C

k(K), we have

Tk,yu(x) =
ÿ

|–|Æk

D
–
u(y)(x ≠ y)–

–! .

Then,

D
—
Tk,yu(x) = D

—
ÿ

|–|Æk

D
–
u(y)(x ≠ y)–

–! ,

=
ÿ

|—|Æ|–|Æk

D
–
u(y)(x ≠ y)–≠—

(– ≠ —)! ,

=
ÿ

|–|Æk≠|—|
D

–+—
u(y)(x ≠ y)–

(–)! ,

=
ÿ

|–|Æk≠|—|
D

–
D

—
u(y)(x ≠ y)–

(–)! ,

= Tk≠|—|yD
—
u(x).

Then,

D
—
Qk,Bu(x) = D

—
1

|—|

⁄

B

Tk,yu d x,

= 1
|—|

⁄

B

Tk≠|—|,yD
—
u d x,

= Qk≠|—|,BD
—
u(x).

(b) For the rest of the question we assume that K has radius 1. Let u œ H
k+1(K). Assuming

that, for i Æ k,
ÎQi,Bu ≠ uÎL2(K) Æ C|u|Hk+1(K), (5)

show that
ÎD

—(Qi,Bu ≠ u)ÎL2(K) Æ C|u|Hk+1(K), (6)

for |—| Æ i Æ k.

[8 marks]



Solution: SEEN
From the previous result

D
—(Qi,Bu ≠ u) = Qi≠|—|,BD

—
u ≠ D

—
u,

so

ÎD
—(Qi,Bu ≠ u)ÎL2(K) = ÎQi≠|—|,BD

—
u ≠ D

—
uÎL2(K) Æ C|D—

u|Hk≠|—|+1(K) = C|u|Hk+1(K).

(c) Using the property
ÎIKuÎHk(K) Æ C1ÎuÎHk(K), (7)

for the nodal interpolation operator IK corresponding to a finite element (K, P , N ), show
that

|IKu ≠ u|Hk(K) Æ C2|u|Hk+1(K), (8)

for some positive constant C2, stating any assumptions you make about (K, P , N ).

[4 marks]

Solution: SEEN

|Iku ≠ u|Hk(K) Æ |Iku ≠ Qk,Bu + Qk,Bu ≠ u|Hk(K),

Æ |Iku ≠ Qk,Bu|Hk(K) + |Qk,Bu ≠ u|Hk(K),

= |Ik(u ≠ Qk,Bu)|Hk(K) + |Qk,Bu ≠ u|Hk(K),

Æ |Ik(u ≠ Qk,Bu)|Hk(K) + |Qk,Bu ≠ u|Hk(K),

Æ (C1 + 1)|Qk,Bu ≠ u|Hk(K),

Æ (C1 + 1)C2|u|Hk+1(K),

as required, where we used that P contains all polynomials of degree k in the third line. In

the last line we used the result of part (b) with |—| = i = k, with C2 = CN where N is the

number of multi-indices — with |—| = k. So, C2 Æ (C1 + 1)C2.
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3. Consider the following triple (K, P , N ).

– K is a triangle with vertices z1, z2, z3.
– P are the polynomials of degree Æ 3.
– N are dual variables given by evaluations at z1 +(z2 ≠z1)i/3+(z3 ≠z1)j/3 for 0 Æ i Æ j Æ 3.

(a) Show that N determines P .

[10 marks]

Solution: SEEN SIMILAR
Let p œ P be mapped to zero by all dual variables. Restricted to �1, the line between z2 and

z1, p is a degree 3 polynomial vanishing at 4 places, so it is zero. Therefore p = L1(x)Q1(x)
where L1(x) is a non-degenerate linear function vanishing on �1. Working through the other

two lines, we obtain that p = cL1(x)L2(x)L3(x), where none of the L functions vanish away

from the three edges of the triangle. But p also vanishes at the centre of the triangle, so

c = 0 i.e. p = 0 as required.

(b) Describe the geometric decomposition for this finite element, and explain why it is a C
0

decomposition.

[10 marks]

Solution: SEEN SIMILAR
We associate the point evaluation at vertices to their corresponding edges, point evaluation

on edges away from vertices to their corresponding edges, and point evaluation at the centre

to the triangle itself. Being C
0

requires that when restricted to a vertex, the function can be

reconstructed purely from the corresponding vertex node. This is clear because there is just

one point value to reconstruct. Being C
0

also requires that when restricted to an edge, the

function can be reconstructed purely from nodal variables assigned to the closure of the edge.

Since we have 4 values along the edge including the two vertices, this completely determines

the cubic function along that edge.
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4. Consider the heat equation,
ˆT

ˆt
= ŸÒ2

T, (9)

solved for a time-dependent function T on a closed simply-connected domain �, with boundary
conditions ˆT

ˆn
= 0 on the boundary ˆ�.

(a) Given a C
0 finite element space, formulate a finite element discretisation of the heat equation

(9).

[5 marks]

Solution: UNSEEN
The variational form is obtained by multiplying both sides by a test function v and integrating

by parts to obtain

Èv, TtÍL2 = ≠ŸÈÒv, ÒT ÍL2 .

The finite element discretisation is then find a time-dependent T œ Vh such that

Èv, TtÍL2 = ≠ŸÈÒv, ÒT ÍL2 , ’v œ Vh.

(b) Show that the discretisation can be written in the form

M Ṫ = KT , (10)

where T is the vector of basis coe�cients for T in the finite element space Vh.

[5 marks]

Solution: UNSEEN
Introducing basis expansions

v =
ÿ

i

vi„i(x), T =
ÿ

i

Ti(t)„(x),

we get ÿ

i

vi

ÿ

j

1
È„i, „jÍL2Ṫj + ŸÈÒ„i, Ò„jÍL2Tj

2
= 0,

but this equation must hold for arbitrary basis coe�cients, so

ÿ

j

Q

ccaÈ„i, „jÍL2
¸ ˚˙ ˝

=Mij

Ṫj + Ÿ ÈÒ„i, Ò„jÍL2
¸ ˚˙ ˝

=Kij

Tj

R

ddb = 0,

as required.

(c) Quoting results from lectures, show that

d

dt

⁄

�
T

2 d x Æ ≠C

⁄

�
T

2 d x, (11)

providing an upper bound for the decay rate C.



[5 marks]

Solution: UNSEEN
For Dirichlet boundary conditions we have the result

⁄

�
T

2 d x Æ Cp

⁄

�
|ÒT |2 d x.

Then, taking v = T in the variational form,

d

dt

⁄

�
T

2 d x = 2
⁄

�
TTt d x,

= ≠2Ÿ

⁄

�
|ÒT |2 d x,

Æ ≠2Ÿ

Cp

⁄

�
T

2 d x.

(d) Explain why this means that the decay rate for the finite element discretisation is larger than
or equal to the decay rate for the unapproximated equation.

[5 marks]

Solution: UNSEEN
The Poincaré constant for H̊

1
is

C
ú
p

= sup
T œH̊1(�)

s
� T

2 d x
s

� |ÒT |2 d x
.

The Poincaré constant for V̊h µ H̊
1

is

C
h

p
= sup

T œV̊h

s
� T

2 d x
s

� |ÒT |2 d x
Æ sup

T œH̊1

s
� |T |2 d x

s
� |ÒT |2 d x

= C
ú
p
,

so C
h

p
Æ C

ú
p
.
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5. This question is based upon the Mastery material “From Functional Analysis to Iterative Methods”
by RC Kirby.
Consider the partial di�erential equation

≠Ò · (“(x)Òu) = f, (12)

on �, with boundary conditions u = 0 on ˆ�, where f is a known function with ÎfÎL2(�) < Œ,
and “ is a known function with c1 Æ “ Æ c2 for c1 > 0, c2 < Œ.

(a) Briefly formulate a finite element discretisation for this problem using linear continuous finite
elements, and explain how the coercivity and continuity constants of the variational problem
depend on c1 and c2. Give details on the function spaces involved and norms involved.

[6 marks]

Solution: SEEN SIMILAR
The weak form is ⁄

�
“Òv · Òu d x =

⁄

�
vf d x,

with the variational problem defined on H̊
1(�), the subspace of H

1(�) with traces satisfying

the zero Dirichlet boundary condition. Then the finite element discretisation has the same

weak form with V̊ µ H̊
1(�).

The bilinear form is continuous since

⁄

�
“Òv · Òu d x Æ bÎuÎH1(�)ÎvÎH1(�),

so the continuity constant is b, and coercive since

⁄

�
“|Òu|2 d x Ø a|u|2

H1(�) Ø a(1 + C)ÎuÎ2
H1(�),

where C is constant for the Poincarè inequality, so the coercivity constant is a(1 + C).
(b) A bilinear form a on a finite element space Vh defines an operator Ah : Vh æ V

Õ
h

into the
dual space given by

(Ahf)[u] = a(f, u), ’f, u œ Vh. (13)

In the notation of the paper, the operator Ih : Rdim Vh æ Vh maps a vector to the function
in Vh with the vector entries as basis coe�cients in the nodal basis expansion. The operator
I Õ

h
: Rdim Vh æ V

Õ
h

maps vectors to linear functionals F œ V
Õ

h
given by

(I Õ
h
f)[u] = fT (I≠1

h
u), ’u œ Vh. (14)

(i) Show that
Ahu = I Õ

h
(Au), ’u œ Vh. (15)

where A is the matrix corresponding to Ah and u is the vector of basis coe�cients of u.
[4 marks]



Solution: SEEN
Let v = Ihv. Then

ÈAhu, vÍ = a(u, v),

= a

Q

a
ÿ

i

ui„i,
ÿ

j

vj„j

R

b ,

=
ÿ

i,j

uivja(„i, „j),

=
ÿ

i,j

uivjAij,

= (Au)T v,

= (Au)T (I≠1
h

Ihv),
= ÈI Õ

h
Au, vÍ, ’v œ Vh,

as required.

(ii) Hence show that
A = (I Õ

h
)≠1

AhIh. (16)
[3 marks]

Solution: SEEN
We have Ihu = u, hence

Au = (I Õ)≠1
h

Ahu = (I Õ)≠1
h

AhIhu, ’u œ Vh,

as required.

(c) Now consider a second bilinear form

bh(u, v) =
⁄

�
uv + Òu · Òv d x, (17)

with corresponding matrix B, and operator Bh : Vh æ V
Õ

h
.

(i) Show that
B

≠1
A = I≠1

h
B

≠1
h

AhIh. (18)
[4 marks]

Solution: SEEN

B
≠1

A = ((I Õ
h
)≠1

BhIh)≠1(I Õ
h
)≠1

AhIh,

= (Ih)≠1
B

≠1
h

I Õ
h
(I Õ

h
)≠1

AhIh,

= (Ih)≠1
B

≠1
h

AhIh,

as required.

(ii) Explain why B
≠1
h

Ah has the same eigenvalues as B
≠1

A.
[3 marks]

Solution: SEEN
B

≠1
A is similar to B

≠1
h

Ah and so they have the same eigenvalues.
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