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1. This question is about the equation

—V?u = f on Q, (;Z =0 on 09, (1)

where €2 is a polygonal domain with boundary 0f2.

(a) Let V be a continuous Lagrange finite element space defined on a triangulation of ). Describe
how the finite element discretisation of (1) using V' results in a matrix-vector equation

Au =b. (2)
[10 marks]
(b) (i) Show that the matrix A satisfies
Al =0, (3)
where 1 is the vector with all entries equal to 1, and O is the zero vector.
[2 marks]
(i) Explain why this means that A is not invertible.
[1 marks|

(c) (i) Describe how to add an extra condition to Equation 1, and correspondingly to your finite
element formulation, so that this issue is removed.

[2 marks]

(i)  Using the “mean estimate”,
||u — 1_L||L2(Q) S C|U|H1(Q),

where u € V' and @ is the mean value of u, explain why Equation (3) cannot hold after
modification.

[5 marks]
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2. (a) Consider the finite element (K, P, N), where
x K is a triangle with vertices (21, 22, 23).
x P is the space of polynomials of degree 1 or less,
x N = (Ny, No, N3), where N;(p) = p(z),i=1,2,3.
Show that N determines P.
[10 marks]

(a) Consider the finite element (K’,Q, N'), where

« K’ is a square with vertices (21, 29, 23, 24) (enumerated clockwise around the square,
starting at the bottom left).

x () = Span{ P, zy}, where P is the space of polynomials of degree 1 or less.
x N' = (Nl, N27N37N4), where N,L(p) = p(Zi), 1= 1, 2, 3,4
Show that N’ determines Q).

[10 marks]
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3. Consider the interval [a,b], with points a = xg, 21, %9, ..., %Tn 1,7, = b. Let T be a subdivision
(i.e. a 1D mesh) of the interval [a, b] into subintervals I = [zy, 211], K =0,..., N — 1.
Consider the following three elements.

1. (K, P,N) where K = I, P are polynomials of degree < 3, and N = (N, Ny, N3, N,) with
Nilu] = u(wy), Nao[u] = w(zpsr), N3fu] = ;5 udz, Ny[u] = o' (2541 + 21)/2).

2. (K,P,N) where K = I}, P are polynomials of degree < 3, and N = (Ny, Ny, N3, N,) with
Nifu] = u(zp), No[u] = u(zpi1), Ns[u] = o' (2x), Nafu] = o/ (zps1).

3. (K,P,N) where K = I, P are polynomials of degree < 3, and N = (N, Ny, N3, Ny)
with Nifu] = u((@ps1 + 2x)/2), Nalu] = o' ((zhsr + 21)/2), Ns[u] = o" (@341 + 1) /2),
Nau] = u" (1 + 1) /2).

(a)  Which of the three elements above are suitable for the following variational problem?
Find u € H'([a, b]) such that

b b
/uv—l—u'v'dx:/ fodz, Yve H'([a,b]).

Justify your answer.

[10 marks]

(b)  Which of the three elements above are suitable for the following variational problem?
Find u € H?([a, b]) such that

b b
/uv—i—u/v/—i—u”v”dx:/ fodz, Vv e H*([a,b)).

Justify your answer.

[10 marks]
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4. (a) For f € L*), where Q is some convex polygonal domain, the L? projection of f into a
degree k Lagrange finite element space V is the function u € V such that

/uvdx:/vfdx, Vv e V.
Q Q

Show that u exists and is unique from this definition, with

Jullgz < [ f]l L2
[5 marks]
(b)  Show that the L? projection is mean-preserving, i.e.
/ udx = / fdx.
Q Q
[5 marks]

(c) Show that the L? projection u into V of f is the minimiser over v € V of the functional

[5 marks]

(d) Hence, show that
lu = fllrz@) < Chlf|m @),

where h is the maximum triangle diameter in the triangulation used to construct V.

[5 marks]
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:Mastery). We quote the following result from lectures. Let K be a triangle with diameter 1, containing a
ball B. There exists a constant C such that for 0 < || < k+ 1 and all f € H*1(Q),

ID?(f = QusFllzzie < CIVE fllra, (4)

where Q. p is the degree-k ball-averaged Taylor polynomial of f.

(a)

(d)

Let Zx, be the nodal interpolation operator on K for the Lagrange finite element of degree
k. Using the following stability estimate

| Zrcul| v iy < Cllull ey,

when k& > 1, together with the estimate in Equation (4), show that when i < &, we have

1T v — ulpricry) < Crlulgre gy
[5 marks]
Let K be a triangle with diameter d. When k£ > 1 and 7 < k, show that
Zicu — ul iy < IOl e ),
where (] is a constant that depends on the shape of K but not the size.
[5 marks]

Let 7 be a triangulation such that the minimum aspect ratio r of the triangles K; satisfies
r > 0. Let V be the degree k Lagrange finite element space. Let u € H*"(Q). Let h be
the maximum over all of the triangle diameters, assuming that with 0 < h < 1. Show that
for i < k and 7 < 2, the global interpolation operator satisfies

thu - u\ Hi(Q) < C’hk“*i\ulmﬂ(g). (5)
[5 marks]
Why does this estimate not hold for i > 27

[5 marks]
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