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1. This question is about the equation

−∇2u = f on Ω, ∂u

∂n
= 0 on ∂Ω, (1)

where Ω is a polygonal domain with boundary ∂Ω.

(a) Let V be a continuous Lagrange finite element space defined on a triangulation of Ω. Describe
how the finite element discretisation of (1) using V results in a matrix-vector equation

Au = b. (2)

[10 marks]

Solution: SEEN
First we develop the weak form by multiplying by a test function v, integrating by parts and
removing the boundary integral due the Neumann boundary condition. The finite element
discretisation is then: find u ∈ V such that∫

Ω
∇v · ∇u dx−

∫
Ω
vf dx = 0, ∀v ∈ V.

Let {φi(x)}Ni=1 be the nodal basis for V . Then expansion of v and u in the basis leads to

N∑
i=1

vi

 N∑
j=1

∫
Ω
φi(x)φj(x) dxuj −

∫
Ω
φi(x)f dx

 = 0,

but the v coefficients are arbitrary, so we have (2) with

Aij =
∫

Ω
∇φi · ∇φj dx, xi = ui, bi =

∫
Ω
φif dx.

(b) (i) Show that the matrix A satisfies
A1 = 0, (3)

where 1 is the vector with all entries equal to 1, and 0 is the zero vector.
[2 marks]

Solution: UNSEEN

(A1)i =
∫

Ω
∇φi(x)

N∑
j=1
∇φj(x).1 dx =

∫
Ω
∇φi(x)∇(1)︸ ︷︷ ︸

=0

dx = 0.

(ii) Explain why this means that A is not invertible.
[1 marks]

Solution: UNSEEN
A is not invertible because it has a zero eigenvalue i.e. a nullspace.

(c) (i) Describe how to add an extra condition to Equation 1, and correspondingly to your finite
element formulation, so that this issue is removed.



[2 marks]
Solution: SEEN
We add an extra condition, that

ū =
∫

Ω
u dx = 0.

Then, we replace V with V̊ which is the subspace of V such that ū = 0 for all u ∈ V .
(ii) Using the “mean estimate”,

‖u− ū‖L2(Ω) ≤ C|u|H1(Ω),

where u ∈ V and ū is the mean value of u, explain why Equation (3) cannot hold after
modification.

[5 marks]
Solution: UNSEEN
Let A be the new matrix after reformulating with V̊ instead of V , under some basis.
By contradiction: let x0 be a non-zero vector such that AX0 = 0. Then there exists a
corresponding non-zero u ∈ V̊ such that∫

Ω
∇v · ∇u dx = 0, ∀v ∈ V.

Taking v = u, we have
0 =

∫
Ω
|∇u|2 dx := |u|2H1(Ω).

Since u is non-zero, we have ‖u‖L2 > 0. Since u ∈ V̊ , we have ū = 0. Hence we have

‖u− ū‖L2(Ω) = ‖u‖L2(Ω) > 0.

This contradicts the mean estimate.
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2. (a) Consider the finite element (K,P,N), where
∗ K is a triangle with vertices (z1, z2, z3).
∗ P is the space of polynomials of degree 1 or less,
∗ N = (N1, N2, N3), where Ni(p) = p(zi), i = 1, 2, 3.

Show that N determines P .

[10 marks]

Solution: SEEN
We make use of the result that if p(x) is a degree k polynomial that vanishes on the line
defined by L(x) = 0 and L is a non-degenerate affine polynomial, then p(x) = L(x)q(x)
where q is a polynomial of degree k − 1.
Let p ∈ P such that Ni(p) = 0, i = 1, 2, 3. Let L1 be a non-degenerate affine polynomial
that vanishes on the line joining z1 and z2. Then the restriction of p to L1 vanishes at 2
points and therefore is zero everywhere on L1 by the fundamental theorem of algebra. Thus
p(x) = L1(x)q(x) where q is a degree 0 polynomial, i.e. p(x) = cL1(x). We also have
that p(z3) = 0, and L1(x) does not vanish at z3, so c = 0 i.e. p = 0 everywhere, hence N
determines P .

(a) Consider the finite element (K ′, Q,N ′), where
∗ K ′ is a square with vertices (z1, z2, z3, z4) (enumerated clockwise around the square,
starting at the bottom left).

∗ Q = Span{P, xy}, where P is the space of polynomials of degree 1 or less.
∗ N ′ = (N1, N2, N3, N4), where Ni(p) = p(zi), i = 1, 2, 3, 4.

Show that N ′ determines Q.

[10 marks]

Solution: SEEN SIMILAR
We make use of the result that if p(x) is a degree k polynomial that vanishes on the line
defined by L(x) = 0 and L is a non-degenerate affine polynomial, then p(x) = L(x)q(x)
where q is a polynomial of degree k − 1.
Let p ∈ P such that Ni(p) = 0, i = 1, 2, 3, 4. Let L1 be a non-degenerate affine polynomial
that vanishes on the line joining z1 and z2. Restricted to L1, p is a degree 1 polynomial, since
all elements of R are constant on L1. Hence, p(x) = L1(x)q1(x), where q1(x) has degree
1. Similarly, let L2 be the non-degenerate affine polynomials vanishing on the line joining z2

and z3. The restriction of q1 to that line vanishes at two points and is therefore equal to zero
everywhere on that line, and hence p(x) = cL1(x)L2(x). However, p(z4) = 0, so c = 0 i.e.
p := 0 i.e. Q determines N ′.
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3. Consider the interval [a, b], with points a = x0, x1, x2, . . . , xn−1, xn = b. Let T be a subdivision
(i.e. a 1D mesh) of the interval [a, b] into subintervals Ik = [xk, xk+1], k = 0, . . . , N − 1.
Consider the following three elements.

1. (K,P,N) where K = Ik, P are polynomials of degree ≤ 3, and N = (N1, N2, N3, N4) with
N1[u] = u(xk), N2[u] = u(xk+1), N3[u] =

∫ xk+1
xk

u dx, N4[u] = u′((xk+1 + xk)/2).
2. (K,P,N) where K = Ik, P are polynomials of degree ≤ 3, and N = (N1, N2, N3, N4) with
N1[u] = u(xk), N2[u] = u(xk+1), N3[u] = u′(xk), N4[u] = u′(xk+1).

3. (K,P,N) where K = Ik, P are polynomials of degree ≤ 3, and N = (N1, N2, N3, N4)
with N1[u] = u((xk+1 + xk)/2), N2[u] = u′((xk+1 + xk)/2), N3[u] = u′′((xk+1 + xk)/2),
N4[u] = u′′′((xk+1 + xk)/2).

(a) Which of the three elements above are suitable for the following variational problem?
Find u ∈ H1([a, b]) such that∫ b

a
uv + u′v′ dx =

∫ b

a
fv dx, ∀v ∈ H1([a, b]).

Justify your answer.

[10 marks]

Solution: SEEN SIMILAR
This equation requires the finite element space to be in H1([a, b]) which requires C0 finite
elements. Elements 1 and 2 can be used to make C0 elements, because you can assign
N1 and N2 to vertices a and b respectively in both cases, so vertex-assigned nodal variables
determine the value of the function there. Element 3 cannot be used, as there is no C1

geometric decomposition for it (all four nodal variables to determine values at a and b in both
cases).

(b) Which of the three elements above are suitable for the following variational problem?
Find u ∈ H2([a, b]) such that∫ b

a
uv + u′v′ + u′′v′′ dx =

∫ b

a
fv dx, ∀v ∈ H2([a, b]).

Justify your answer.

[10 marks]

Solution: SEEN SIMILAR
This equation requires the finite element space to be in H2([a, b]) which requires C1 finite
elements. Element 2 can be used to make C1 elements, because you can assign N1, N3

and N2, N4 to vertices a and b respectively in both cases, so vertex-assigned nodal variables
determine the value of the function and the derivative there.
Elements 1 and 3 cannot be used because the value of the derivatives at a and b require three
nodal variables for each, so a C1 geometric decomposition is not possible.
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4. (a) For f ∈ L2(Ω), where Ω is some convex polygonal domain, the L2 projection of f into a
degree k Lagrange finite element space V is the function u ∈ V such that∫

Ω
uv dx =

∫
Ω
vf dx, ∀v ∈ V.

Show that u exists and is unique from this definition, with

‖u‖L2 ≤ ‖f‖L2 .

[5 marks]

Solution: SEEN SIMILAR
This variational problem has a bilinear form which is just the L2 inner product. Hence it is
trivially continuous and coercive with scaling constants equal to 1. From the Lax-Milgram
theorem, the solution exists and is unique. Taking v = u, we have

‖u‖2
L2 = 〈u, f〉L2 ≤ ‖u‖L2‖f‖L2 ,

from Cauchy-Schwarz, and dividing both sides by ‖u‖L2 gives the result.
(b) Show that the L2 projection is mean-preserving, i.e.∫

Ω
u dx =

∫
Ω
f dx.

[5 marks]

Solution: UNSEEN
Since V is a Lagrange finite element space of degree k, it contains the function v = 1, from
which we obtain the result.

(c) Show that the L2 projection u into V of f is the minimiser over v ∈ V of the functional

J [v] =
∫

Ω
(v − f)2 dx.

[5 marks]

Solution: UNSEEN
Method 1: solve by computing variational derivative,

δJ [v; δv] = 2
∫

Ω
δv(v − f) dx = 0, ∀δv ∈ V,

which gives v = u.
Method 2: by contradiction. If u is not the minimiser, then there exists v ∈ V with
J [v] ≤ J [u]. Then

J [v] =
∫

Ω
(v − f)2 dx =

∫
Ω

((v − u) + (u− f))2 dx,

=
∫

Ω
(v − u)2 dx+

∫
Ω

2(v − u)(u− f) dx︸ ︷︷ ︸
=0 by defn of u

+
∫

Ω
(u− f)2 dx,

= ‖v − u‖2
L2 + J [u],

and we conclude that ‖v − u‖2
L2 ≤ 0, a contradiction.



(d) Hence, show that
‖u− f‖L2(Ω) < Ch|f |H1(Ω),

where h is the maximum triangle diameter in the triangulation used to construct V .

[5 marks]

Solution: SEEN SIMILAR
Since u minimises the functional J , we have

‖u− f‖L2(Ω) = sup
‖v‖L2(Ω)>0

‖v − f‖L2(Ω),

≤ ‖Ihf − f‖L2(Ω),

≤ Ch|f |H1(Ω),

where Ih is the nodal interpolation operator into V , and we used the standard approximation
result for Ih.
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5 (Mastery). We quote the following result from lectures. Let K1 be a triangle with diameter 1, containing a
ball B. There exists a constant C such that for 0 ≤ |β| ≤ k + 1 and all f ∈ Hk+1(Ω),

‖Dβ(f −Qk,Bf)‖L2(K1) ≤ C‖∇k+1f‖L2(K1), (4)

where Qk,B is the degree-k ball-averaged Taylor polynomial of f .

(a) Let IK1 be the nodal interpolation operator on K1 for the Lagrange finite element of degree
k. Using the following stability estimate

‖IKu‖Hk(K1) ≤ C‖u‖Hk(K1),

when k > 1, together with the estimate in Equation (4), show that when i ≤ k, we have

|IK1u− u|Hi(K1) ≤ C1|u|Hk+1(K1).

[5 marks]

Solution: SEEN

|IK1u− u|2Hi(K1) ≤ ‖IK1u− u‖2
Hk+1(K1)

= ‖IK1u−Qk,Bu+Qk,Bu− u‖2
Hk+1(K1)

≤ ‖Qk,Bu− u‖2
Hk+1(K1) + ‖I(u−Qk,Bu)‖2

Hk+1(K1),

≤ ‖Qk,Bu− u‖2
Hk+1(K1) + C2‖Qk,Bu− u‖2

Hk+1(K1),

≤ (1 + C2)|u|2Hk+1(K1).

(b) Let K be a triangle with diameter d. When k > 1 and i ≤ k, show that

|IKu− u|Hi(K) ≤ dk+1−iC1|u|Hk+1(K),

where C1 is a constant that depends on the shape of K but not the size.

[5 marks]

Solution: SEEN
Consider the change of variables x → φ(x) = x/d. This map takes K to K1 with diameter
1. Then ∫

K
|Dβ(IKu− u)|2 dx = d−2|β|+1

∫
K1
|Dβ(IK1u ◦ φ− u ◦ φ)|2 dx,

≤ C2
1d
−2|β+1 ∑

|α|=k+1

∫
K1
|Dαu ◦ φ|2 dx,

≤ C2
1d
−2|β+2(k+1) ∑

|α|=k+1

∫
K
|Dαu|2 dx,

= C2
1d

2(−|β|+k+1)|u|2Hk+1(K),

and taking the square root gives the result.



(c) Let T be a triangulation such that the minimum aspect ratio r of the triangles Ki satisfies
r > 0. Let V be the degree k Lagrange finite element space. Let u ∈ Hk+1(Ω). Let h be
the maximum over all of the triangle diameters, assuming that with 0 ≤ h < 1. Show that
for i ≤ k and i < 2, the global interpolation operator satisfies

‖Ihu− u‖Hi(Ω) ≤ Chk+1−i|u|Hk+1(Ω). (5)

[5 marks]

Solution: SEEN
The Lagrange finite element space is C0, so the first derivatives of Ihu are defined in the
finite element sense. Then we may write (for i < 2)

‖Ihu− u‖2
Hi(Ω) =

∑
K∈T
‖IKu− u‖2

Hi(K),

≤
∑
K∈T

CKd
2(k+1−i)
K |u|2Hk+1(K),

≤ Cmaxh
2(k+1−i) ∑

K∈T
|u|2Hk+1(K),

= Cmaxh
2(k+1−i)|u|2Hk+1(Ω),

where the existence of the Cmax = maxK CK < ∞ is due to the lower bound in the aspect
ratio.

(d) Why does this estimate not hold for i ≥ 2?

[5 marks]

Solution: UNSEEN
This is because the weak second derivatives of Ihu are not in L2(Ω), we only have
Ihu ∈ H1(Ω).
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