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1. What is the choice of the geometric decomposition (allocation of nodal variables to cell and vertex
entities) that leads to the maximum possible global continuity of finite element spaces defined on
the interval [0, L] constructed from the following one-dimensional elements (K, P, N). Justify your
answer.

(a) K = [a, b], P is linear polynomials, N = (N1, N2) where N1[u] = u((a + b)/2),
N2[u] = u′((a + b)/2).

[6 marks]

(b) K = [a, b], P is quadratic polynomials, N = (N1, N2, N3) where N1[u] = u(a), N2[u] = u(b),
N3[u] =

∫ b
a u d x.

[6 marks]

(c) K = [a, b], P is quadratic polynomials, N = (N1, N2, N3) where N1[u] = u′(a), N2[u] =
u′(b),N3[u] = u((a + b)/2).

[7 marks]
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2. (a) Consider the finite element (K, P , N ), with
∗ K is a non-degenerate triangle,
∗ P is the space of polynomials on K of degree ≤ 1.
∗ N = (N1, N2, N3), where

Ni(u) =
∫

fi

u d x,

where (f1, f2, f3) are the edges of K, with f1 joining vertices 1 and 2, f2 joining vertices
2 and 3, and f3 joining vertices 3 and 1.

Show that N determines P .

[10 marks]

(b) Now consider the finite element (K, P , N ), with
∗ K is a non-degenerate triangle,
∗ P is the space of polynomials on K of degree ≤ 2.
∗ N = (N1,1, N1,2, N2,1, N2,2, N3,1, N3,2), where

Ni,j(u) =
∫

fi

ϕi,ju d x,

where the edge test functions ϕi,j define a basis for linear functions restricted to fi such
that ϕ1,1 = 1 on vertex 1 and 0 on vertex 2, etc.

Show that N does not determine P .

[10 marks]
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3. (a) Let b be a continuous, coercive bilinear form on V , and F be a continuous linear form on V .
Let u ∈ V solve the linear variational problem

b(u, v) = F (v) ∀v ∈ V.

Let Vh be a finite dimensional subspace of V , and let uh ∈ V solve the Galerkin approximation

b(uh, v) = F (v) ∀v ∈ Vh.

Show that
b(u − uh, v) = 0, ∀v ∈ Vh.

[4 marks]

(b) Hence, show that
∥u − uh∥V ≤ M

γ
max
v∈Vh

∥u − v∥V ,

where γ and M are the coercivity and continuity constants for b respectively.

[4 marks]

(c) Consider the variational problem of finding u ∈ H1([0, 1]) such that∫ 1

0
vu + v′u′ d x =

∫ 1

0
vx d x + v(1) − v(0), ∀v ∈ H1([0, 1]).

After dividing the interval [0, 1] into N equispaced cells and forming a P1 C0 finite element
space VN , the error ∥u − uh∥H1 = 0 for any N > 0.
Explain why this is expected.

[6 marks]

(d) Let H̊1([0, 1]) be the subspace of H1([0, 1]) such that u(0) = 0. Consider the variational
problem of finding u ∈ H̊1([0, 1]) with

∫ 1

0
v′u′ d x =

∫ 1/2

0
v d x, ∀v ∈ H̊([0, 1]).

The interval [0, 1] is divided into 3N equispaced cells (where N is a positive integer). After
forming a P1 C0 finite element space VN , the error ∥u − uh∥H1 is found not to converge at
the expected rate. Explain why this is expected?

[6 marks]
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4. The inhomogeneous Helmholtz equation in two dimensions is given by

α(x)u − ∇2u = f,
∂u

∂n
= 0 on ∂Ω, (1)

where ∂Ω is the boundary of the problem domain Ω, and α(x) is a C∞(Ω) function with bounds
1 ≤ α(x) ≤ 2 for all z ∈ Ω.

(a) Write down a variational formulation for this problem, in the form

a(u, v) = F (v), ∀v ∈ H1(Ω),

and show that if u solves the variational formulation, and u ∈ H2(Ω) then u solves (1) in an
appropriate sense.

[6 marks]

(b) Show that a(·, ·) is continuous and coercive.

[6 marks]

(c) Hence, show that the linear Lagrange finite element approximation satisfies

∥u − uh∥H1(Ω) ≤ Ch∥u∥H2(Ω).

for C > 0, independent of u. (You may make use of the approximation theory estimate

∥u − Ihu∥H1(Ω) ≤ Ĉh∥u∥H2(Ω).

for Ĉ > 0, independent of u, where Ih is the nodal interpolation operator Ih : H2(Ω) → Vh,
where Vh is the finite element space with mesh parameter h, and any other results from
lectures.)

[8 marks]
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