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CHAPTER

ONE

INTRODUCTION

A video recording of the following material is available here.

In this section we provide an introduction that establishes some initial ideas about how the finite element method
works and what it is about.

The finite element method is an approach to solving partial differential equations (PDEs) on complicated domains.
It has the flexibility to build discretisations that can increase the order of accuracy, and match the numerical dis-
cretisation to the physical problem being modelled. It has an elegant mathematical formulation that lends itself
both to mathematical analysis and to flexible code implementation. In this course we blend these two directions
together.

1.1 Poisson’s equation in the unit square

A video recording of the following material is available here.

In this introduction we concentrate on the specific model problem of Poisson’s equation in the unit square.

Definition 1.1 (Poisson’s equation in the unit square) Let Ω = [0, 1]× [0, 1]. For a given function 𝑓 , we seek 𝑢
such that

−
(︂
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2

)︂
𝑢 := −∇2𝑢 = 𝑓, 𝑢(0, 𝑦) = 𝑢(1, 𝑦) = 0,

𝜕𝑢

𝜕𝑦
(𝑥, 0) =

𝜕𝑢

𝜕𝑦
(𝑥, 1) = 0. (1.1)

In this problem, the idea is that we are given a specific known function 𝑓 (for example, 𝑓 = 𝑠𝑖𝑛(2𝜋𝑥)𝑠𝑖𝑛(2𝜋𝑦)),
and we have to find the corresponding unknown function 𝑢 that satisfies the equation (including the boundary
conditions). Here we have combined a mixture of Dirichlet boundary conditions specifying the value of the function
𝑢, and Neumann boundary conditions specifying the value of the normal derivative 𝜕𝑢/𝜕𝑛 := 𝑛 · ∇𝑢. This is
because these two types of boundary conditions are treated differently in the finite element method, and we would
like to expose both treatments in the same example. The treatment of boundary conditions is one of the strengths
of the finite element method.

1.2 Triangulations

A video recording of the following material is available here.

The description of our finite element method starts by considering a triangulation.

Definition 1.2 (Triangulation) Let Ω be a polygonal subdomain of R2. A triangulation 𝒯 of Ω is a set of triangles
{𝐾𝑖}𝑁𝑖=1, such that:

1. int𝐾𝑖 ∩ int𝐾𝑗 = ∅, 𝑖 ̸= 𝑗, where int denotes the interior of a set (no overlaps).

2. ∪𝐾𝑖 = Ω̄, the closure of Ω (triangulation covers Ω).

3
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3. No vertex of any triangle lies in the interior of an edge of another triangle (triangle vertices only meet other
triangle vertices).

1.3 Our first finite element space

A video recording of the following material is available here.

The idea is that we will approximate functions which are polynomial (at some chosen degree) when restricted
to each triangle, with some chosen continuity conditions between triangles. We shall call the space of possible
functions under these choices a finite element space. In this introduction, we will just consider the following space.

Definition 1.3 (The (P1) finite element space) Let 𝒯 be a triangulation of Ω. Then the P1 finite element space
is a space 𝑉ℎ containing all functions 𝑣 such that

1. 𝑣 ∈ 𝐶0(Ω) the space of continuous functions at every point in Ω,

2. 𝑣|𝐾𝑖
is a linear function for each 𝐾𝑖 ∈ 𝒯 .

We also define the following subspace,

𝑉ℎ = {𝑣 ∈ 𝑉ℎ : 𝑣(0, 𝑦) = 𝑣(1, 𝑦) = 0} . (1.2)

This is the subspace of the P1 finite element space 𝑉ℎ of functions that satisfy the Dirichlet boundary conditions.
We will search only amongst 𝑉ℎ for our approximate solution to the Poisson equation. This is referred to as strong
boundary conditions. Note that we do not consider any subspaces related to the Neumann conditions. These will
emerge later.

1.4 Integral formulations and 𝐿2

A video recording of the following material is available here.

The finite element method is based upon integral formulations of partial differential equations. Rather than check-
ing if two functions are equal by checking their value at every point, we will just check that they are equal in an
integral sense. We do this by introducing the 𝐿2 norm, which is a way of measuring the “magnitude” of a function.

Definition 1.4 For a real-valued function 𝑓 on a domain Ω, with Lebesgue integral∫︁
Ω

𝑓(𝑥) 𝑑𝑥,

we define the 𝐿2 norm of 𝑓 ,

‖𝑓‖𝐿2(Ω) =

(︂∫︁
Ω

|𝑓(𝑥)|2 𝑑𝑥
)︂1/2

.

This motivates us to say that two functions are equal if the 𝐿2 norm of their difference is zero. It only makes sense
to do that if the functions individually have finite 𝐿2 norm, which then also motivates the 𝐿2 function space.

Definition 1.5 We define 𝐿2(Ω) as the set of functions

𝐿2(Ω) =
{︀
𝑓 : ‖𝑓‖𝐿2(Ω) <∞

}︀
,

and identify two functions 𝑓 and 𝑔 if ‖𝑓 − 𝑔‖𝐿2(Ω) = 0, in which case we write 𝑓 ≡ 𝑔 in 𝐿2.

Example 1.6 Consider the two functions 𝑓 and 𝑔 defined on Ω = [0, 1]× [0, 1] with

𝑓(𝑥, 𝑦) =

{︂
1 𝑥 ≥ 0.5,
0 𝑥 < 0.5,

𝑔(𝑥, 𝑦) =

{︂
1 𝑥 > 0.5,
0 𝑥 ≤ 0.5.

Since 𝑓 and 𝑔 only differ on the line 𝑥 = 0.5 which has zero area, then ‖𝑓 − 𝑔‖𝐿2(Ω) = 0, and so 𝑓 ≡ 𝑔 in 𝐿2.

4 Chapter 1. Introduction
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1.5 Finite element derivative

A video recording of the following material is available here.

Functions in 𝑉ℎ do not have derivatives everywhere. This means that we have to work with a more general definition
(and later we shall learn when it does and does not work).

Definition 1.7 (Finite element partial derivative) The finite element partial derivative 𝜕𝐹𝐸

𝜕𝑥𝑖
𝑢 of 𝑢 is defined in

𝐿2(Ω) such that restricted to 𝐾𝑖, we have

𝜕𝐹𝐸𝑢

𝜕𝑥𝑖
|𝐾𝑖 =

𝜕𝑢

𝜕𝑥𝑖
.

Here we see why we needed to introduce 𝐿2: we have a definition that does not have a unique value on the edge
between two adjacent triangles. This is verified in the following exercises.

Exercise 1.8 Let 𝑉ℎ be a P1 finite element space for a triangulation 𝒯 ofΩ. For all 𝑢 ∈ 𝑉ℎ, show that the definition
above uniquely defines 𝜕𝐹𝐸𝑢

𝜕𝑥𝑖
in 𝐿2(Ω).

Exercise 1.9 Let 𝑢 ∈ 𝐶1(Ω) (the space of functions with continuous partial derivatives at every point in Ω). Show
that the finite element partial derivative and the usual derivative are equal in 𝐿2(Ω).

In view of this second exercise, in this section we will consider all derivatives to be finite element derivatives.
In later sections we shall consider an even more general definition of the derivative which contains both of these
definitions.

1.6 Towards the finite element discretisation

A video recording of the following material is available here.

We will now use the finite element derivative to develop the finite element discretisation. We assume that we have
a solution 𝑢 to Equation (1.1) that is sufficiently smooth (e.g. 𝑢 ∈ 𝐶1 in this case). (Later, we will consider more
general types of solutions to this equation, but this assumption just motivates things for the time being.)

We take 𝑣 ∈ 𝑉ℎ, multiply by Equation (1.1), and integrate over the domain.

We then use the following integration by parts result.

Theorem 1.10 (Integration by parts) For a suitably smooth function 𝑢 and with 𝑛 an outward normal to the
boundary 𝜕Ω then for a suitable smooth function 𝑣∫︁

Ω

(−∆𝑢)𝑣 𝑑𝑥 =

∫︁
Ω

∇𝑢 · ∇𝑣 𝑑𝑥−
∫︁
𝜕Ω

𝑣 (𝑛 · ∇𝑢) 𝑑𝑆.

Proof 1.11

See e.g. Brenner and Scott Section 5.1 including weaker assumptions.

Using this integration by parts in each triangle 𝐾𝑖 then gives∑︁
𝑖

(︂∫︁
𝐾𝑖

∇𝑣 · ∇𝑢 𝑑𝑥−
∫︁
𝜕𝐾𝑖

𝑣𝑛 · ∇𝑢 𝑑𝑆
)︂

=

∫︁
Ω

𝑣𝑓 𝑑𝑥,

where 𝑛 is the unit outward pointing normal to 𝐾𝑖.

Next, we consider each interior edge 𝑓 in the triangulation, formed as the intersection between two neighbouring
triangles 𝐾𝑖 ∩𝐾𝑗 . If 𝑖 > 𝑗, then we label the 𝐾𝑖 side of 𝑓 with a +, and the 𝐾𝑗 side with a −. Then, denoting Γ
as the union of all such interior edges, we can rewrite our equation as∫︁

Ω

∇𝑣 · ∇𝑢 𝑑𝑥−
∫︁
Γ

𝑣𝑛+ · ∇𝑢+ 𝑣𝑛− · ∇𝑢 𝑑𝑆 −
∫︁
𝜕Ω

𝑣𝑛 · ∇𝑢 𝑑𝑆 =

∫︁
Ω

𝑣𝑓 𝑑𝑥,

1.5. Finite element derivative 5
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where 𝑛± is the unit normal to 𝑓 pointing from the ± side into the ∓ side. Since 𝑛− = −𝑛+, the interior edge
integrals vanish.

Further, on the boundary, either 𝑣 vanishes (at 𝑥 = 0 and 𝑥 = 1) or 𝑛 · ∇𝑢 vanishes (at 𝑦 = 0 and 𝑦 = 1), and we
obtain ∫︁

Ω

∇𝑣 · ∇𝑢 𝑑𝑥 =

∫︁
Ω

𝑣𝑓 𝑑𝑥.

The finite element approximation is then defined by requiring that this equation holds for all 𝑣 ∈ 𝑉ℎ and when we
approximate 𝑢 by 𝑢ℎ ∈ 𝑉ℎ.

A video recording of the following material is available here.

Definition 1.12 The finite element approximation 𝑢ℎ ∈ 𝑉ℎ to the solution 𝑢 of Poisson’s equation is defined by∫︁
Ω

∇𝑣 · ∇𝑢ℎ 𝑑𝑥 =

∫︁
Ω

𝑣𝑓 𝑑𝑥, ∀𝑣 ∈ 𝑉ℎ. (1.3)

A video recording of the following material is available here.

We now present some numerical results for the case 𝑓 = 2𝜋2 sin(𝜋𝑥) sin(2𝜋𝑦).

Fig. 1.1: Numerical solution on a 4× 4 mesh.

We see that for this example, the error is decreasing as we increase the number of triangles, for the meshes consid-
ered.

A video recording of the following material is available here.

In general, our formulation raises a number of questions.

1. Is 𝑢ℎ unique?

2. What is the size of the error 𝑢− 𝑢ℎ?

3. Does this error go to zero as the mesh is refined?

4. For what types of functions 𝑓 can these questions be answered?

5. What other kinds of finite element spaces are there?

6. How do we extend this approach to other PDEs?

7. How can we calculate 𝑢ℎ using a computer?

6 Chapter 1. Introduction
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Fig. 1.2: Numerical solution on a 16× 16 mesh.

Fig. 1.3: Numerical solution on a 128× 128 mesh.

Fig. 1.4: Plot showing error versus mesh resolution. We observe the error decreases proportionally to ℎ2, where ℎ
is the maximum triangle edge size in the triangulation.

1.6. Towards the finite element discretisation 7
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We shall aim to address these questions, at least partially, through the rest of this course. For now, we concentrate
on the final question, in general terms.

In this course we shall mostly concentrate on finite element methods for elliptic PDEs, of which Poisson’s equation
is an example, using continuous finite element spaces, of which 𝑃1 is an example. The design, analysis and
implementation of finite methods for PDEs is a huge field of current research, and includes parabolic and elliptic
PDEs and other PDEs from elasticity, fluid dynamics, electromagnetism, mathematical biology, mathematical
finance, astrophysics and cosmology, etc. This course is intended as a starting point to introduce the general
concepts that can be applied in all of these areas.

Exercise 1.13 Derive a finite element approximation for the following problem.

Find 𝑢 such that

−∇ · ((2 + sin(2𝜋𝑥))∇𝑢) = exp(cos(2𝜋𝑥)),

with boundary conditions 𝑢 = 0 on the entire boundary.

Exercise 1.14 Derive a finite element approximation for the following problem.

Find 𝑢 such that

−∇2𝑢 = exp(𝑥𝑦),

in the 1× 1 square region as above, with boundary conditions 𝑢 = 𝑥(1− 𝑥) on the entire boundary.

Exercise 1.15 Derive a finite element approximation for the following problem.

Find 𝑢 such that

−∇2𝑢 =
1

1 + 𝑥2 + 𝑦2
,

in the 1× 1 square region, with boundary conditions 𝑢+ 𝜕𝑢
𝜕𝑛 = 𝑥(1− 𝑥) on the entire boundary.

1.7 Practical implementation

A video recording of the following material is available here.

The finite element approximation above is only useful if we can actually compute it. To do this, we need to construct
an efficient basis for 𝑃1, which we call the nodal basis.

Definition 1.16 (P1 nodal basis) Let {𝑧𝑖}𝑀𝑖=1 indicate the vertices in the triangulation 𝒯 . For each vertex 𝑧𝑖, we
define a basis function 𝜑𝑖 ∈ 𝑉ℎ by

𝜑𝑖(𝑧𝑗) = 𝛿𝑖𝑗 :=

{︂
1 𝑖 = 𝑗,
0 𝑖 ̸= 𝑗.

We can define a similar basis for 𝑉ℎ by removing the basis functions 𝜑𝑖 corresponding to vertices 𝑧𝑖 on the Dirichlet
boundaries 𝑥 = 0 and 𝑥 = 1; the dimension of the resulting basis is �̄� .

If we expand 𝑢ℎ and 𝑣 in the basis for 𝑉ℎ,

𝑢ℎ(𝑥) =

�̄�∑︁
𝑖=1

𝑢𝑖𝜑𝑖(𝑥), 𝑣(𝑥) =

�̄�∑︁
𝑖=1

𝑣𝑖𝜑𝑖(𝑥),

8 Chapter 1. Introduction
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into Equation (1.3), then we obtain

�̄�∑︁
𝑖=1

𝑣𝑖

⎛⎝ �̄�∑︁
𝑗=1

∫︁
Ω

∇𝜑𝑖 · ∇𝜑𝑗 𝑑𝑥𝑢𝑗 −
∫︁
Ω

𝜑𝑖𝑓 𝑑𝑥

⎞⎠ = 0.

Since this equation must hold for all 𝑣 ∈ 𝑉ℎ, then it must hold for all basis coefficients 𝑣𝑖, and we obtain the
matrix-vector system

𝐾u = f,

where

𝐾𝑖𝑗 =

∫︁
Ω

∇𝜑𝑖 · ∇𝜑𝑗 𝑑𝑥,

u = (𝑢1, 𝑢2, . . . , 𝑢�̄� )
𝑇
,

f = (𝑓1, 𝑓2, . . . , 𝑓�̄� )
𝑇
, 𝑓𝑖 =

∫︁
Ω

𝜑𝑖𝑓 𝑑𝑥.

Once we have solved for u, we can use these basis coefficients to reconstruct the solution 𝑢ℎ. The system is square,
but we do not currently know that 𝐾 is invertible. This is equivalent to the finite element approximation having
a unique solution 𝑢ℎ, which we shall establish in later sections. This motivates why we care that 𝑢ℎ exists and is
unique.

A video recording of the following material is available here.

Putting solvability aside for the moment, the goal of the implementation sections of this course is to explain how
to efficiently form 𝐾 and f , and solve this system. For now we note a few following aspects that suggest that this
might be possible. First, the matrix 𝐾 and vector f can be written as sums over elements,

𝐾𝑖𝑗 =
∑︁
𝐾∈𝒯

∫︁
𝐾

∇𝜑𝑖 · ∇𝜑𝑗 𝑑𝑥,

where 𝑓𝑖 =
∑︁
𝐾∈𝒯

∫︁
𝐾

𝜑𝑖𝑓 𝑑𝑥.

For each entry in the sum for 𝐾𝑖𝑗 , the integrand is composed entirely of polynomials (actually constants in this
particular case, but we shall shortly consider finite element spaces using polynomials of higher degree). This
motivates our starting point in exposing the computer implementation, namely the integration of polynomials over
triangles using quadrature rules. This will also motivate an efficient way to construct derivatives of polynomials
evaluated at quadrature points. Further, we shall shortly develop an interpolation operator ℐ such that ℐ𝑓 ∈ 𝑉ℎ. If
we replace 𝑓 by ℐ𝑓 in the approximations above, then the evaluation of 𝑓𝑖 can also be performed via quadrature
rules.

Even further, the matrix 𝐾 is very sparse, since in most triangles, both 𝜑𝑖 and 𝜑𝑗 are zero. Any efficient imple-
mentation must make use of this and avoid computing integrals that return zero. This motivates the concept of
global assembly, the process of looping over elements, computing only the contributions to 𝐾 that are non-zero
from that element. Finally, the sparsity of𝐾 means that the system should be solved using numerical linear algebra
algorithms that can exploit this sparsity.

Having set out the main challenges of the computational implementation, we now move on to define and discuss a
broader range of possible finite element spaces.

1.7. Practical implementation 9
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CHAPTER

TWO

FINITE ELEMENT SPACES: LOCAL TO GLOBAL

In this section, we discuss the construction of general finite element spaces. Given a triangulation 𝒯 of a domain
Ω, finite element spaces are defined according to

1. the form the functions take (usually polynomial) when restricted to each cell (a triangle, in the case considered
so far),

2. the continuity of the functions between cells.

We also need a mechanism to explicitly build a basis for the finite element space. We first do this by looking at
a single cell, which we call the local perspective. Later we will take the global perspective, seeing how function
continuity is enforced between cells.

2.1 Ciarlet’s finite element

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

The first part of the definition is formalised by Ciarlet’s definition of a finite element.

Definition 2.1 (Ciarlet’s finite element) Let

1. the element domain 𝐾 ⊂ R𝑛 be some bounded closed set with piecewise smooth boundary,

2. the space of shape functions 𝒫 be a finite dimensional space of functions on 𝐾, and

3. the set of nodal variables 𝒩 = (𝑁0, . . . , 𝑁𝑘) be a basis for the dual space 𝑃 ′.

Then (𝐾,𝒫,𝒩 ) is called a finite element.

For the cases considered in this course, 𝐾 will be a polygon such as a triangle, square, tetrahedron or cube, and 𝑃
will be a space of polynomials. Here, 𝑃 ′ is the dual space to 𝑃 , defined as the space of linear functions from 𝑃 to
R. Examples of dual functions to 𝑃 include:

1. The evaluation of 𝑝 ∈ 𝑃 at a point 𝑥 ∈ 𝐾.

2. The integral of 𝑝 ∈ 𝑃 over a line 𝑙 ∈ 𝐾.

3. The integral of 𝑝 ∈ 𝑃 over 𝐾.

4. The evaluation of a component of the derivative of 𝑝 ∈ 𝑃 at a point 𝑥 ∈ 𝐾.

Exercise 2.2 Show that the four examples above are all linear functions from 𝑃 to R.

Exercise 2.3 For a domain 𝐾 and shape space 𝑃 , is the following functional a nodal variable? Explain your
answer.

𝑁0(𝑝) =

∫︁
𝐾

𝑝2 𝑑𝑥.

Ciarlet’s finite element provides us with a standard way to define a basis for the 𝑃 , called the nodal basis.

11
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A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

Definition 2.4 ((local) nodal basis) Let (𝐾,𝒫,𝒩 ) be a finite element. The nodal basis is the basis
{𝜑0, 𝜑2, . . . , 𝜑𝑘} of 𝒫 that is dual to 𝒩 , i.e.

𝑁𝑖(𝜑𝑗) = 𝛿𝑖𝑗 , 0 ≤ 𝑖, 𝑗 ≤ 𝑘.

We now introduce our first example of a Ciarlet element.

Definition 2.5 (The 1-dimensional Lagrange element) The 1-dimensional Lagrange element (𝐾,𝒫,𝒩 ) of de-
gree 𝑘 is defined by

1. 𝐾 is the interval [𝑎, 𝑏] for −∞ < 𝑎 < 𝑏 <∞.

2. 𝒫 is the (𝑘 + 1)-dimensional space of degree 𝑘 polynomials on 𝐾,

3. 𝒩 = {𝑁0, . . . , 𝑁𝑘} with

𝑁𝑖(𝑣) = 𝑣(𝑥𝑖), 𝑥𝑖 = 𝑎+ (𝑏− 𝑎)𝑖/𝑘, ∀𝑣 ∈ 𝒫, 𝑖 = 0, . . . , 𝑘.

Exercise 2.6 Show that the nodal basis for 𝒫 is given by

𝜑𝑖(𝑥) =

∏︀𝑘
𝑗=0,𝑗 ̸=𝑖(𝑥− 𝑥𝑗)∏︀𝑘
𝑗=0,𝑗 ̸=𝑖(𝑥𝑖 − 𝑥𝑗)

, 𝑖 = 0, . . . , 𝑘.

2.2 Vandermonde matrix and unisolvence

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

More generally, It is useful computationally to write the nodal basis in terms of another arbitrary basis {𝜓𝑖}𝑘𝑖=0.
This transformation is represented by the Vandermonde matrix.

Definition 2.7 (Vandermonde matrix) Given a dual basis 𝒩 and a basis {𝜓𝑖}𝑘𝑖=0, the Vandermonde matrix is
the matrix 𝑉 with coefficients

𝑉𝑖𝑗 = 𝑁𝑗(𝜓𝑖).

This relationship is made clear by the following lemma.

Lemma 2.8 The expansion of the nodal basis {𝜑𝑖}𝑘𝑖=0 in terms of another basis {𝜓𝑖}𝑘𝑖=0 for 𝒫 ,

𝜑𝑖(𝑥) =

𝑘∑︁
𝑗=0

𝜇𝑖𝑗𝜓𝑗(𝑥),

has coefficients 𝜇𝑖𝑗 , 0 ≤ 𝑖, 𝑗 ≤ 𝑘 given by

𝜇 = 𝑉 −1,

where 𝜇 is the corresponding matrix.

Proof 2.9 The nodal basis definition becomes

𝛿𝑖𝑗 = 𝑁𝑗(𝜑𝑖) =

𝑘∑︁
𝑙=0

𝜇𝑖𝑙𝑁𝑗(𝜓𝑙) =

𝑘∑︁
𝑙=0

𝜇𝑖𝑙𝑉𝑙𝑗 = (𝜇𝑉 )𝑖𝑗 ,

where 𝜇 is the matrix with coefficients 𝜇𝑖𝑗 , and 𝑉 is the matrix with coefficients 𝑁𝑗(𝜓𝑖).

12 Chapter 2. Finite element spaces: local to global
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A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

Exercise 2.10 Consider the following finite element.

• 𝐾 is the interval [0, 1].

• 𝑃 is the quadratic polynomials on 𝐾.

• The nodal variables are:

𝑁0[𝑝] = 𝑝(0), 𝑁1[𝑝] = 𝑝(1), 𝑁2 =

∫︁ 1

0

𝑝(𝑥) 𝑑𝑥.

Find the corresponding nodal basis.

Given a triple (𝐾,𝒫,𝒩 ), it is necessary to verify that 𝒩 is indeed a basis for 𝒫 ′, i.e. that the Ciarlet element is
well-defined. Then the nodal basis is indeed a basis for 𝒫 by construction. The following lemma provides a useful
tool for checking this.

Lemma 2.11 (dual condition) Let 𝐾,𝒫 be as defined above, and let {𝑁0, 𝑁1, . . . , 𝑁𝑘} ∈ 𝒫 ′. Let
{𝜓0, 𝜓1, . . . , 𝜓𝑘} be a basis for 𝒫 .

Then the following three statements are equivalent.

1. {𝑁0, 𝑁1, . . . , 𝑁𝑘} is a basis for 𝒫 ′.

2. The Vandermonde matrix with coefficients

𝑉𝑖𝑗 = 𝑁𝑗(𝜓𝑖), 0 ≤ 𝑖, 𝑗 ≤ 𝑘,

is invertible.

3. If 𝑣 ∈ 𝒫 satisfies 𝑁𝑖(𝑣) = 0 for 𝑖 = 0, . . . , 𝑘, then 𝑣 ≡ 0.

Proof 2.12 Let {𝑁0, 𝑁1, . . . , 𝑁𝑘} be a basis for 𝒫 ′. This is equivalent to saying that given element 𝐸 of 𝒫 ′, we
can find basis coefficients {𝑒𝑖}𝑘𝑖=0 ∈ R such that

𝐸 =

𝑘∑︁
𝑖=0

𝑒𝑖𝑁𝑖.

This in turn is equivalent to being able to find a vector 𝑒 = (𝑒0, 𝑒1, . . . , 𝑒𝑘)
𝑇 such that

𝑏𝑖 = 𝐸(𝜓𝑖) =

𝑘∑︁
𝑗=0

𝑒𝑗𝑁𝑗(𝜓𝑖) =

𝑘∑︁
𝑗=0

𝑒𝑗𝑉𝑖𝑗 ,

i.e. the equation 𝑉 𝑒 = 𝑏 is solvable. This means that (1) is equivalent to (2).

On the other hand, we may expand any 𝑣 ∈ 𝒫 according to

𝑣(𝑥) =

𝑘∑︁
𝑖=0

𝑓𝑖𝜓𝑖(𝑥).

Then

𝑁𝑖(𝑣) = 0 ⇐⇒
𝑘∑︁

𝑗=0

𝑓𝑗𝑁𝑖(𝜓𝑗) = 0, 𝑖 = 0, 1, . . . , 𝑘,

by linearity of 𝑁𝑖. So (3) is equivalent to
𝑘∑︁

𝑗=0

𝑓𝑗𝑁𝑖(𝜓𝑗) = 0, 𝑖 = 0, 1, . . . , 𝑘 =⇒ 𝑓𝑗 = 0, 𝑗 = 0, 1, . . . , 𝑘,

which is equivalent to 𝑉 𝑇 being invertible, which is equivalent to 𝑉 being invertible, and so (3) is equivalent to
(2).

2.2. Vandermonde matrix and unisolvence 13
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A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

This result leads us to introducing the following terminology.

Definition 2.13 (Unisolvence.) We say that 𝒩 determines 𝒫 if it satisfies condition 3 of Lemma 2.11. If this is the
case, we say that (𝐾,𝒫,𝒩 ) is unisolvent.

We can now go and directly apply this lemma to the 1D Lagrange elements.

Corollary 2.14 The 1D degree 𝑘 Lagrange element is a finite element.

Proof 2.15 Let (𝐾,𝒫,𝒩 ) be the degree 𝑘 Lagrange element. We need to check that 𝒩 determines 𝒫 . Let 𝑣 ∈ 𝒫
with 𝑁𝑖(𝑣) = 0 for all 𝑁𝑖 ∈ 𝒩 . This means that

𝑣(𝑎+ (𝑏− 𝑎)𝑖/𝑘) = 0, 𝑖 =, 0, 1, . . . , 𝑘,

which means that 𝑣 vanishes at 𝑘 + 1 points in 𝐾. Since 𝑣 is a degree 𝑘 polynomial, it must be zero by the
fundamental theorem of algebra.

Exercise 2.16 Consider the following proposed finite element.

• 𝐾 is the interval [0, 1].

• 𝑃 is the linear polynomials on 𝐾.

• The nodal variables are:

𝑁0[𝑝] = 𝑝(0.5), 𝑁1 =

∫︁ 1

0

𝑝(𝑥) 𝑑𝑥.

Is this finite element unisolvent? Explain your answer.

2.3 2D and 3D finite elements

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

We would like to construct some finite elements with 2D and 3D domains𝐾. The fundamental theorem of algebra
does not directly help us there, but the following lemma is useful when checking that 𝒩 determines 𝒫 in those
cases.

Lemma 2.17 Let 𝑝(𝑥) : R𝑑 → R be a polynomial of degree 𝑘 ≥ 1 that vanishes on a hyperplane Π𝐿 defined by

Π𝐿 = {𝑥 : 𝐿(𝑥) = 0} ,

for a non-degenerate affine function 𝐿(𝑥) : R𝑑 → R. Then 𝑝(𝑥) = 𝐿(𝑥)𝑞(𝑥) where 𝑞(𝑥) is a polynomial of degree
𝑘 − 1.

Proof 2.18 Choose coordinates (by shifting the origin and applying a linear transformation) such that 𝑥 =
(𝑥1, . . . , 𝑥𝑑) with 𝐿(𝑥) = 𝑥𝑑, so Π𝐿 is defined by 𝑥𝑑 = 0. Then the general form for a polynomial is

𝑃 (𝑥1, . . . , 𝑥𝑑) =

𝑘∑︁
𝑖𝑑=0

⎛⎝ ∑︁
|𝑖1+...+𝑖𝑑−1|≤𝑘−𝑖𝑑

𝑐𝑖1,...,𝑖𝑑−1,𝑖𝑑𝑥
𝑖𝑑
𝑑

𝑑−1∏︁
𝑙=1

𝑥𝑖𝑙𝑙

⎞⎠ ,

Then, 𝑝(𝑥1, . . . , 𝑥𝑑−1, 0) = 0 for all (𝑥1, . . . , 𝑥𝑑−1), so

0 =

⎛⎝ ∑︁
|𝑖1+...+𝑖𝑑−1|≤𝑘

𝑐𝑖1,...,𝑖𝑑−1,0

𝑑−1∏︁
𝑙=1

𝑥𝑖𝑙𝑙

⎞⎠
14 Chapter 2. Finite element spaces: local to global
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which means that

𝑐𝑖1,...,𝑖𝑑−1,0 = 0, ∀|𝑖1 + . . .+ 𝑖𝑑−1| ≤ 𝑘.

This means we may rewrite

𝑃 (𝑥) = 𝐿(𝑥)

⎛⎝ 𝑘∑︁
𝑖𝑑=1

∑︁
|𝑖1+...+𝑖𝑑−1|≤𝑘−𝑖𝑑

𝑐𝑖1,...,𝑖𝑑−1,𝑖𝑑𝑥
𝑖𝑑−1
𝑑

𝑑−1∏︁
𝑙=1

𝑥𝑖𝑙𝑙

⎞⎠
⏟  ⏞  

,

𝑃 (𝑥) = 𝑥𝑑⏟ ⏞ 
𝐿(𝑥)

⎛⎝𝑘−1∑︁
𝑖𝑑=0

∑︁
|𝑖1+...+𝑖𝑑−1|≤𝑘−𝑖𝑑

𝑐𝑖1,...,𝑖𝑑−1,𝑖𝑑𝑥
𝑖𝑑−1
𝑑

𝑑−1∏︁
𝑙=1

𝑥𝑖𝑙𝑙

⎞⎠
⏟  ⏞  

𝑄(𝑥)

,

with deg(𝑄) = 𝑘 − 1.

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

Exercise 2.19 The following polynomial vanishes on the line 𝑦 = 1 − 𝑥. Show that it satisfies the result of the
previous theorem.

𝑥5 + 5𝑥4𝑦 − 𝑥4 + 6𝑥3𝑦2 − 4𝑥3𝑦 − 2𝑥2𝑦3 − 2𝑥2𝑦2 − 3𝑥𝑦4 + 4𝑥𝑦3 + 𝑦5 − 𝑦4

Equipped with this tool we can consider some finite elements in two dimensions.

Definition 2.20 (Lagrange elements on triangles) The triangular Lagrange element of degree 𝑘 (𝐾,𝒫,𝒩 ), de-
noted 𝑃𝑘, is defined as follows.

1. 𝐾 is a (non-degenerate) triangle with vertices 𝑧1, 𝑧2, 𝑧3.

2. 𝒫 is the space of degree 𝑘 polynomials on 𝐾.

3. 𝒩 = {𝑁𝑖,𝑗 : 0 ≤ 𝑖 ≤ 𝑘, 0 ≤ 𝑗 ≤ 𝑖} defined by 𝑁𝑖,𝑗(𝑣) = 𝑣(𝑥𝑖,𝑗) where

𝑥𝑖,𝑗 = 𝑧1 + (𝑧2 − 𝑧1)
𝑖

𝑘
+ (𝑧3 − 𝑧1)

𝑗

𝑘
.

We illustrate this for the cases 𝑘 = 1, 2.

Example 2.21 (P1 elements on triangles) The nodal basis for P1 elements is point evaluation at the three ver-
tices.

Example 2.22 (P2 elements on triangles) The nodal basis for P2 elements is point evaluation at the three ver-
tices, plus point evaluation at the three edge centres.

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

We now need to check that that the degree 𝑘 Lagrange element is a finite element, i.e. that 𝒩 determines 𝒫 . We
will first do this for 𝑃1.

Lemma 2.23 The degree 1 Lagrange element on a triangle 𝐾 is a finite element.

Proof 2.24 Let Π1, Π2, Π3 be the three lines containing the vertices 𝑧2 and 𝑧3, 𝑧1 and 𝑧3, and 𝑧1 and 𝑧3 respec-
tively, and defined by 𝐿1 = 0, 𝐿2 = 0, and 𝐿3 = 0 respectively. Consider a linear polynomial 𝑝 vanishing at 𝑧1,
𝑧2, and 𝑧3. The restriction 𝑝|Π1

of 𝑝 to Π1 is a linear function vanishing at two points, and therefore 𝑝 = 0 on Π1,
and so 𝑝 = 𝐿1(𝑥)𝑄(𝑥), where 𝑄(𝑥) is a degree 0 polynomial, i.e. a constant 𝑐. We also have

0 = 𝑝(𝑧1) = 𝑐𝐿1(𝑧1) =⇒ 𝑐 = 0,

since 𝐿1(𝑧1) ̸= 0, and hence 𝑝(𝑥) ≡ 0. This means that 𝒩 determines 𝒫 .

2.3. 2D and 3D finite elements 15
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A video recording of the following material is available here.

Exercise 2.25 Let 𝐾 be a rectangle, 𝑃 be the polynomial space spanned by {1, 𝑥, 𝑦, 𝑥𝑦}, let 𝒩 be the set of dual
elements corresponding to point evaluation at each vertex of the rectangle. Show that 𝒩 determines the finite
element.

This technique can then be extended to degree 2.

Lemma 2.26 The degree 2 Lagrange element is a finite element.

Proof 2.27 Let 𝑝 be a degree 2 polynomial with𝑁𝑖(𝑝) for all of the degree 2 dual basis elements. Let Π1, Π2, Π3,
𝐿1, 𝐿2 and 𝐿3 be defined as for the proof of Lemma . 𝑝|Π1

is a degree 2 scalar polynomial vanishing at 3 points,
and therefore 𝑝 = 0 on Π1, and so 𝑝(𝑥) = 𝐿1(𝑥)𝑄1(𝑥) with deg(𝑄1) = 1. We also have 0 = 𝑝|Π2

= 𝐿1𝑄1|Π2
,

so 𝑄1|Π2
= 0 and we conclude that 𝑝(𝑥) = 𝑐𝐿1(𝑥)𝐿2(𝑥). Finally, 𝑝 also vanishes at the midpoint of 𝐿3, so we

conclude that 𝑐 = 0 as required.

The technique extends further to degree 3.

Exercise 2.28 Show that the degree 3 Lagrange element is a finite element.

Going beyond degree 3, we have more than 1 nodal variable taking point evaluation inside the triangle. To deal
with this, we use the nested triangular structure of the Lagrange triangle.

Lemma 2.29 The degree 𝑘 Lagrange element is a finite element for 𝑘 > 3.

Proof 2.30 We prove by induction. Assume that the degree 𝑘 − 3 Lagrange element is a finite element. Let 𝑝 be
a degree 𝑘 polynomial with 𝑁𝑖(𝑝) for all of the degree 𝑘 dual basis elements. Let Π1, Π2, Π3, 𝐿1, 𝐿2 and 𝐿3 be
defined as for the proof of lemma 2.23. The restriction 𝑝|Π1 is a degree 𝑘 polynomial in one variable that vanishes
at 𝑘 + 1 points, and therefore 𝑝(𝑥) = 𝐿1(𝑥)𝑄1(𝑥), with deg(𝑄1) = 𝑘 − 1. 𝑝 and therefore 𝑄 also vanishes on
Π2, so 𝑄1(𝑥) = 𝐿2(𝑥)𝑄2(𝑥).

Repeating the argument again means that 𝑝(𝑥) = 𝐿1(𝑥)𝐿2(𝑥)𝐿3(𝑥)𝑄3(𝑥), with deg(𝑄3) = 𝑘 − 3. 𝑄3 must
vanish on the remaining points in the interior of𝐾, which are arranged in a smaller triangle𝐾 ′ and correspond to
the evaluation points for a degree 𝑘 − 3 Lagrange finite element on 𝐾 ′. From the inductive hypothesis, and using
the results for 𝑘 = 1, 2, 3, we conclude that 𝑄3 ≡= 0, and therefore 𝑝 ≡ 0 as required.

2.4 Some more exotic elements

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

We now consider some finite elements that involve derivative evaluation. The Hermite elements involve evaluation
of first derivatives as well as point evaluations.

Definition 2.31 (Cubic Hermite elements on triangles) The cubic Hermite element is defined as follows:

1. 𝐾 is a (nondegenerate) triangle,

2. 𝒫 is the space of cubic polynomials on 𝐾,

3. 𝒩 = {𝑁1, 𝑁2, . . . , 𝑁10} defined as follows:

• (𝑁1, . . . , 𝑁3): evaluation of 𝑝 at vertices,

• (𝑁4, . . . , 𝑁9): evaluation of the gradient of 𝑝 at the 3 triangle vertices.

• 𝑁10: evaluation of 𝑝 at the centre of the triangle.

It turns out that the Hermite element is insufficient to guarantee functions with continuous derivatives between
triangles. This problem is solved by the Argyris element.

Definition 2.32 (Quintic Argyris elements on triangles) The quintic Argyris element is defined as follows:

1. 𝐾 is a (nondegenerate) triangle,

2. 𝒫 is the space of quintic polynomials on 𝐾,

16 Chapter 2. Finite element spaces: local to global

https://imperial.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=495e54dd-23b6-4d92-bcdb-ac8e00ab3829


Numerical Methods for Variational Problems, Edition 2024.0

3. 𝒩 defined as follows:

• evaluation of 𝑝 at 3 vertices,

• evaluation of gradient of 𝑝 at 3 vertices,

• evaluation of Hessian of 𝑝 at 3 vertices,

• evaluation of the gradient normal to 3 triangle edges.

2.5 Global continuity

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

Next we need to know how to glue finite elements together to form spaces defined over a triangulation (mesh). To
do this we need to develop a language for specifying connections between finite element functions between element
domains.

Definition 2.33 (Finite element space) Let 𝒯 be a triangulation made of triangles 𝐾𝑖, with finite elements
(𝐾𝑖,𝒫𝑖,𝒩𝑖). A space 𝑉 of functions on 𝒯 is called a finite element space if for each 𝑢 ∈ 𝑉 , and for each
𝐾𝑖 ∈ 𝒯 , 𝑢|𝐾𝑖

∈ 𝒫𝑖.

Note that the set of finite elements do not uniquely determine a finite element space, since we also need to specify
continuity requirements between triangles, which we will do in this chapter.

Definition 2.34 (Finite element space) A finite element space 𝑉 is a 𝐶𝑚 finite element space if 𝑢 ∈ 𝐶𝑚 for all
𝑢 ∈ 𝑉 .

The following lemma guides use in how to inspect the continuity of finite element functions.

Lemma 2.35 (Continuity lemma) Let 𝒯 be a triangulation on Ω, and let 𝑉 be a finite element space defined on
𝒯 . The following two statements are equivalent.

1. 𝑉 is a 𝐶𝑚 finite element space.

2. The following two conditions hold.

• For each vertex 𝑧 in 𝒯 , let {𝐾𝑖}𝑚𝑖=1 be the set of triangles that contain 𝑧. Then 𝑢|𝐾1(𝑧) = 𝑢|𝐾2(𝑧) = . . . =
𝑢|𝐾𝑚

(𝑧), for all functions 𝑢 ∈ 𝑉 , and similarly for all of the partial derivatives of degrees up to 𝑚.

• For each edge 𝑒 in 𝒯 , let 𝐾1, 𝐾2 be the two triangles containing 𝑒. Then 𝑢|𝐾1(𝑧) = 𝑢|𝐾2(𝑧), for all points
𝑧 on the interior of 𝑒, and similarly for all of the partial derivatives of degrees up to 𝑚.

Proof 2.36 𝑉 is polynomial on each triangle 𝐾, so continuity at points on the interior of each triangle 𝐾 is
immediate. We just need to check continuity at points on vertices, and points on the interior of edges, which is
equivalent to the two parts of the second condition.

This means that we just need to guarantee that the polynomial functions and their derivatives agree at vertices
and edges (similar ideas extend to higher dimensions). We achieve this by assigning nodal variables (and their
associated nodal basis functions) appropriately to vertices, edges etc. of each triangle𝐾. First we need to introduce
this terminology.

2.5. Global continuity 17
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A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

Definition 2.37 (local and global mesh entities) Let 𝐾 be a triangle. The local mesh entities of 𝐾 are the ver-
tices, the edges, and 𝐾 itself. The global mesh entities of a triangulation 𝒯 are the vertices, edges and triangles
comprising 𝒯 .

Having made this definition, we can now talk about how nodal variables can be assigned to local mesh entities in
a geometric decomposition.

Definition 2.38 (local geometric decomposition) Let (𝐾,𝒫,𝒩 ) be a finite element. We say that the finite element
has a (local) geometric decomposition if each dual basis function 𝑁𝑖 can be associated with a single mesh entity
𝑤 ∈𝑊 such that for any 𝑓 ∈ 𝒫 , 𝑁𝑖(𝑓) can be calculated from 𝑓 and derivatives of 𝑓 evaluated on 𝑤.

Exercise 2.39 Consider the finite element defined by:

1. 𝐾 is the unit interval [0, 1]

2. 𝑃 is the space of quadratic polynomials on 𝐾,

3. The nodal variables are:

𝑁0[𝑣] = 𝑣(0), 𝑁1[𝑣] = 𝑣(1), 𝑁2[𝑣] =

∫︁ 1

0

𝑣(𝑥) 𝑑𝑥.

Find the corresponding nodal basis for 𝑃 in terms of the monomial basis {1, 𝑥, 𝑥2}. Provide the 𝐶0 geometric
decomposition for the finite element (demonstrating that it is indeed 𝐶0).

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

To discuss 𝐶𝑚 continuity, we need to introduce some further vocabulary about the topology of 𝐾.

Definition 2.40 (closure of a local mesh entity) Let 𝑤 be a local mesh entity for a triangle. The closure of 𝑤 is
the set of local mesh entities contained in 𝑤 (including 𝑤 itself).

This allows us to define the degree of continuity of the local geometric decomposition.

Definition 2.41 ((C^m) geometric decomposition) Let (𝐾,𝒫,𝒩 ) be a finite element with geometric
decomposition 𝑊 . We say that 𝑊 is a 𝐶0 geometric decomposition if, for each local mesh entity 𝑤,
there exists 𝒩𝑤 ⊂ 𝒩 such that

1. All 𝑁 ∈ 𝒩𝑤 are associated to elements in the closure of 𝑤 in 𝑊 ,

2. (𝑤,𝒫|𝑤,𝒩𝑤) is a finite element, where 𝒫|𝑤 is the restriction of 𝒫 to 𝑤.

We additionally say that 𝑊 is a 𝐶1 geometric decomposition if for each local mesh entity 𝑤, there
exists 𝒩𝑤 ⊂ 𝒩 such that

1. All 𝑁 ∈ 𝒩𝑤 are associated to elements in the closure of 𝑤 in 𝑊 ,

2. (𝑤,∇𝒫|𝑤,𝒩𝑤) is a finite element,

where ∇𝒫|𝑤 is the restriction of ∇𝒫 to 𝑤, and

∇𝒫 = {𝑢 : 𝑢 = ∇𝑣, 𝑣 ∈ 𝒫}.

This idea extends to 𝐶𝑚 finite elements in an analogous way.

The idea behind this definition is that if two triangles 𝐾1 and 𝐾2 are joined at a vertex $v$, with finite elements
(𝐾1,𝒫1,𝒩1) and (𝐾2,𝒫2,𝒩2), then the nodal variables 𝒩1,𝑣 and 𝒩1,𝑣 can be chosen so that 𝑓 (and for 𝑚 = 1,
the derivatives of 𝑓 ) has the same values at 𝑣 in both 𝐾1 and 𝐾2.

18 Chapter 2. Finite element spaces: local to global
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Similarly, if𝐾1 and𝐾2 are joined at an edge 𝑒, then if the corresponding 𝒩1,𝑒 and 𝒩2,𝑒 nodal variables associated
with that edge agree when applied to 𝑢, then 𝑢 will be 𝐶𝑚 continuous through that edge. We just need to define
these correspondences.

We explore this definition through a couple of exercises.

Exercise 2.42 Show that the Lagrange elements of degree 𝑘 have 𝐶0 geometric decompositions.

Exercise 2.43 Show that the Argyris element has a 𝐶1 geometric decomposition.

A video recording of the following material is available here.

We now use the geometric decomposition to construct global finite element spaces over the whole triangulation
(mesh). We just need to define what it means for elements of the nodal variables from the finite elements of two
neighbouring triangles to “correspond”.

We start by considering spaces of functions that are discontinuous between triangles, before defining 𝐶𝑚 contin-
uous subspaces.

Definition 2.44 (Discontinuous finite element space) Let 𝒯 be a triangulation, with finite elements (𝐾𝑖, 𝑃𝑖,𝒩𝑖)
for each triangle 𝐾𝑖. The associated discontinuous finite element space 𝑉 , is defined as

𝑉 = {𝑢 : 𝑢|𝐾𝑖
∈ 𝑃𝑖, ∀𝐾𝑖 ∈ 𝒯 } .

This defines families of discontinuous finite element spaces.

Example 2.45 (Discontinuous Lagrange finite element space) Let 𝒯 be a triangulation, with Lagrange ele-
ments of degree 𝑘, (𝐾𝑖, 𝑃𝑖,𝒩𝑖), for each triangle 𝐾𝑖 ∈ 𝒯 . The corresponding discontinuous finite element space,
denoted 𝑃𝑘 DG, is called the discontinuous Lagrange finite element space of degree 𝑘.

Next we need to associate each nodal variable in each element to a vertex, edge or triangle of the triangulation 𝒯ℎ,
i.e. the global mesh entitles. The following definition explains how to choose this association.

Definition 2.46 (Global (C^m) geometric decomposition) Let 𝒯 be a triangulation with finite elements
(𝐾𝑖,𝒫𝑖,𝒩𝑖), each with a 𝐶𝑚 geometric decomposition. Assume that for each global mesh entity 𝑤, the 𝑛𝑤
triangles containing 𝑤 have finite elements (𝐾𝑖,𝒫𝑖,𝒩𝑖) each with 𝑀𝑤 dual basis functions associated with 𝑤.
Further, each of these basis functions can be enumerated 𝑁𝑤

𝑖,𝑗 ∈ 𝒩𝑖, 𝑗 = 1, . . . ,𝑀𝑤, such that 𝑁𝑤
1,𝑗(𝑢|𝐾1

) =
𝑁𝑤

2,𝑗(𝑢|𝐾2
) = . . . = 𝑁𝑤

𝑛𝑤,𝑗(𝑢|𝐾𝑛
), , 𝑗 = 1, . . . ,𝑀𝑤, for all functions 𝑢 ∈ 𝐶𝑚(Ω).

This combination of finite elements on 𝒯 together with the above enumeration of dual basis functions on global
mesh entities is called a global 𝐶𝑚 geometric decomposition.

Now we use this global 𝐶𝑚 geometric decomposition to build a finite element space on the triangulation.

Definition 2.47 (Finite element space from a global (C^m) geometric decomposition) Let 𝒯 be a triangula-
tion with finite elements (𝐾𝑖,𝒫𝑖,𝒩𝑖), each with a 𝐶𝑚 geometric decomposition, and let 𝑉 be the corresponding
discontinuous finite element space. Then the global 𝐶𝑚 geometric decomposition defines a subspace 𝑉 of 𝑉 con-
sisting of all functions that 𝑢 satisfy 𝑁𝑤

1,𝑗(𝑢|𝐾1
) = 𝑁𝑤

2,𝑗(𝑢|𝐾2
) = . . . = 𝑁𝑤

𝑛𝑤,𝑗(𝑢|𝐾𝑛𝑤
), 𝑗 = 1, . . . ,𝑀𝑤 for all

mesh entities 𝑤 ∈ 𝒯 .

The following result shows that the global 𝐶𝑚 geometric decomposition is a useful definition.

Lemma 2.48 Let 𝑉 be a finite element space defined from a global 𝐶𝑚 geometric decomposition. Then 𝑉 is a
𝐶𝑚 finite element space.

Proof 2.49 From the local 𝐶𝑚 decomposition, functions and derivatives up to degree𝑚 on vertices and edges are
uniquely determined from dual basis elements associated with those vertices and edges, and from the global 𝐶𝑚

decomposition, the agreement of dual basis elements means that functions and derivatives up to degree 𝑚 agree
on vertices and edges, and hence the functions are in 𝐶𝑚 from Lemma 2.35.

We now apply this to a few examples, which can be proved as exercises.

Example 2.50 The finite element space built from the 𝐶0 global decomposition built from degree 𝑘 Lagrange
element is called the degree 𝑘 continuous Lagrange finite element space, denoted 𝑃𝑘.

2.5. Global continuity 19
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Example 2.51 The finite element space built from the 𝐶1 global decomposition built from the quintic Argyris
element is called the Argyris finite element space.

In this section, we have built a theoretical toolbox for the construction of finite element spaces. In the next section,
we move on to studying how well we can approximate continuous functions as finite element functions.

20 Chapter 2. Finite element spaces: local to global
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THREE

INTERPOLATION OPERATORS

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

In this section we investigate how continuous functions can be approximated by finite element functions. We start
locally, looking at a single finite element, and then move globally to function spaces on a triangulation.

3.1 Local and global interpolation operators

Definition 3.1 (Local interpolator) Given a finite element (𝐾,𝒫,𝒩 ), with corresponding nodal basis {𝜑𝑖}𝑘𝑖=0.
Let 𝑣 be a function such that𝑁𝑖(𝑣) is well-defined for all 𝑖. Then the local interpolator ℐ𝐾 is an operator mapping
𝑣 to 𝒫 such that

(𝐼𝐾𝑣)(𝑥) =

𝑘∑︁
𝑖=0

𝑁𝑖(𝑣)𝜑𝑖(𝑥).

We now discuss some useful properties of the local interpolator.

Lemma 3.2 The operator 𝐼𝐾 is linear.

Exercise 3.3 Prove Lemma 3.2.

Lemma 3.4

𝑁𝑖(𝐼𝐾(𝑣)) = 𝑁𝑖(𝑣), ∀ 0 ≤ 𝑖 ≤ 𝑘.

Exercise 3.5 Prove Lemma 3.4.

Lemma 3.6 𝐼𝐾 is the identity when restricted to 𝒫 .

Exercise 3.7 Prove Lemma 3.6.

By combining together the local interpolators in each triangle of the triangulation, we obtain the global interpolator
into the finite element space.

Definition 3.8 (Global interpolator) Let 𝑉ℎ be a finite element space constructed from a triangulation 𝒯ℎ with
finite elements (𝐾𝑖,𝒫𝑖,𝒩𝑖), each with a 𝐶𝑚 geometric decomposition. The global interpolator ℐℎ is defined by
ℐℎ𝑢 ∈ 𝑉ℎ such that

ℐℎ𝑢|𝐾 = 𝐼𝐾𝑢

for each 𝐾 ∈ 𝒯ℎ.

21
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3.2 Measuring interpolation errors

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

Next we look at how well we can approximate continuous functions using the interpolation operator, i.e. we want
to measure the approximation error ℐℎ𝑢−𝑢. We are interested in integral formulations, so we want to use integral
quantities to measure errors. We have already seen the 𝐿2 norm. It is also useful to take derivatives into account
when measuring the error. To discuss higher order derivatives, we introduce the multi-index.

Definition 3.9 (Multi-index.) For 𝑑-dimensional space, a multi-index 𝛼 = (𝛼1, . . . , 𝛼𝑑) assigns the number of
partial derivatives in each Cartesian direction. We write |𝛼| =

∑︀𝑑
𝑖=1 𝛼𝑖.

This means we can write mixed partial derivatives, for example if 𝛼 = (1, 2) then

𝐷𝛼𝑢 =
𝜕3𝑢

𝜕𝑥𝜕𝑦2
.

Now we can define some norms involving derivatives for measuring errors.

Definition 3.10 ((H^k) seminorm and norm) The 𝐻𝑘 seminorm is defined as

|𝑢|2𝐻𝑘 =
∑︁
|𝛼|=𝑘

∫︁
Ω

|𝐷𝛼𝑢|2 𝑑𝑥,

where the sum is taken over all multi-indices of size 𝑘 i.e. all the derivatives are of degree 𝑘.

The 𝐻𝑘 norm is defined as

‖𝑢‖2𝐻𝑘 =

𝑘∑︁
𝑖=0

|𝑢|2𝐻𝑖 .

where we conventionally write |𝑢|𝐻0 = ‖𝑢‖𝐿2 .

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

To help to estimate interpolation errors, we quote the following important result (which we will return to much
later).

Theorem 3.11 (Sobolev’s inequality (for continuous functions)) Let Ω be an 𝑛-dimensional domain with Lips-
chitz boundary, and let 𝑢 be a continuous function with 𝑘 continuous derivatives, i.e. 𝑢 ∈ 𝐶𝑘,∞(Ω). Let 𝑘 be an
integer with 𝑘 > 𝑛/2. Then there exists a constant 𝐶 (depending only on Ω) such that

‖𝑢‖𝐶∞(Ω) = max
𝑥∈Ω

|𝑢(𝑥)| ≤ 𝐶‖𝑢‖𝐻𝑘(Ω).

Proof 3.12 See a functional analysis course or textbook.

This is extremely useful because it means that we can measure the 𝐻𝑘 norm by integrating and know that it gives
an upper bound on the value of 𝑢 at each point. We say that 𝑢 is in 𝐶∞(Ω) if ‖𝑢‖𝐶∞(Ω) < ∞, and Sobolev’s
inequality tells us that this is the case if ‖𝑢‖𝐻𝑘(Ω) <∞.

This result can be easily extended to derivatives.

Corollary 3.13 (Sobolev’s inequality for derivatives (for continuous functions)) Let Ω be a 𝑛-dimensional do-
main with Lipschitz boundary, and let 𝑢 ∈ 𝐶𝑘,∞(Ω) Let 𝑘 be an integer with 𝑘 −𝑚 > 𝑛/2. Then there exists a
constant 𝐶 (depending only on Ω) such that

‖𝑢‖𝐶𝑚,∞(Ω) :=
∑︁

|𝛼|≤𝑚

max
𝑥∈Ω

|𝐷𝛼𝑢(𝑥)| ≤ 𝐶‖𝑢‖𝐻𝑘(Ω).

Proof 3.14 Just apply Sobolev’s inequality to the 𝑚 derivatives of 𝑢.
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3.3 Approximation by averaged Taylor polynomials

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

The basic tool for analysing interpolation error for continuous functions is the Taylor series. Rather than taking
the Taylor series about a single point, since we are interested in integral quantities, it makes sense to consider an
averaged Taylor series over some region inside each cell. This will become important later when we start thinking
about more general types of derivative that only exist in an integral sense.

Definition 3.15 (Averaged Taylor polynomial) LetΩ ⊂ R𝑛 be a domain with diameter 𝑑, that is star-shaped with
respect to a ball 𝐵 contained within Ω. For 𝑓 ∈ 𝐶𝑘,∞ the averaged Taylor polynomial 𝑄𝑘,𝐵𝑓 ∈ 𝒫𝑘 is defined as

𝑄𝑘,𝐵𝑓(𝑥) =
1

|𝐵|

∫︁
𝐵

𝑇 𝑘𝑓(𝑦, 𝑥) 𝑑𝑦,

where 𝑇 𝑘𝑓 is the Taylor polynomial of degree 𝑘 of 𝑓 ,

𝑇 𝑘𝑓(𝑦, 𝑥) =
∑︁
|𝛼|≤𝑘

𝐷𝛼𝑓(𝑦)
(𝑥− 𝑦)𝛼

𝛼!
,

𝛼! =

𝑛∏︁
𝑖=1

𝛼𝑖!,

𝑥𝛼 =

𝑛∏︁
𝑖=1

𝑥𝛼𝑖
𝑖 .

Exercise 3.16 Show that

𝐷𝛽𝑄𝑘,𝐵𝑓 = 𝑄𝑘−|𝛽|,𝐵𝐷
𝛽𝑓,

where𝑄𝑙
𝐵 is the degree 𝑙 averaged Taylor polynomial of 𝑓 , and𝐷𝛽 is the 𝛽-th derivative where 𝛽 is a multi-index.

Now we develop an estimate of the error 𝑇 𝑘𝑓 − 𝑓 .

A first video recording of the following material is available here.

Imperial students can also watch this video on Panopto

A second video recording of the following material is available here.

Imperial students can also watch this video on Panopto

Theorem 3.17 Let Ω ⊂ R𝑛 be a domain with diameter 𝑑, that is star-shaped with respect to a ball 𝐵 contained
within Ω. Then there exists a constant 𝐶(𝑘, 𝑛) such that for 0 ≤ |𝛽| ≤ 𝑘 + 1 and all 𝑓 ∈ 𝐶𝑘+1,∞(Ω),

‖𝐷𝛽(𝑓 −𝑄𝑘,𝐵𝑓)‖𝐿2(Ω) ≤ 𝐶
|Ω|1/2

|𝐵|1/2
𝑑𝑘+1−|𝛽||𝑓 |𝐻𝑘+1(Ω).

Proof 3.18 The Taylor remainder theorem (see a calculus textbook) gives

𝑓(𝑥)− 𝑇𝑘𝑓(𝑦, 𝑥) = (𝑘 + 1)
∑︁

|𝛼|=𝑘+1

(𝑥− 𝑦)𝛼

𝛼!

∫︁ 1

0

𝐷𝛼𝑓(𝑡𝑦 + (1− 𝑡)𝑥)𝑡𝑘 𝑑𝑡,

when 𝑓 ∈ 𝐶𝑘+1,∞.

Integration over 𝑦 in 𝐵 and dividing by |𝐵| gives

𝑓(𝑥)−𝑄𝑘,𝐵𝑓(𝑥) =
𝑘 + 1

|𝐵|
∑︁

|𝛼|=𝑘+1

∫︁
𝐵

(𝑥− 𝑦)𝛼

𝛼!
×
∫︁ 1

0

𝐷𝛼𝑓(𝑡𝑦 + (1− 𝑡)𝑥)𝑡𝑘 𝑑𝑡 𝑑𝑦.
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Then∫︁
Ω

|𝑓(𝑥)−𝑄𝑘,𝐵𝑓(𝑥)|2 𝑑𝑥 ≤ 𝐶
𝑑2(𝑘+1)

|𝐵|2
∑︁

|𝛼|=𝑘+1

∫︁
Ω

(︂∫︁
𝐵

∫︁ 1

0

|𝐷𝛼𝑓(𝑡𝑦 + (1− 𝑡)𝑥)|𝑡𝑘 𝑑𝑡 𝑑𝑦
)︂2

𝑑𝑥,

≤ 𝐶0
𝑑2(𝑘+1)

|𝐵|2
∑︁

|𝛼|=𝑘+1

∫︁
Ω

∫︁
𝐵

∫︁ 1

0

|𝐷𝛼𝑓(𝑡𝑦 + (1− 𝑡)𝑥)|2 𝑑𝑡 𝑑𝑦
∫︁
𝐵

∫︁ 1

0

𝑡2𝑘 𝑑𝑡 𝑑𝑦 𝑑𝑥.

Then ∫︁
Ω

|𝑓(𝑥)−𝑄𝑘,𝐵𝑓(𝑥)|2 𝑑𝑥 ≤ 𝐶1
𝑑2(𝑘+1)

|𝐵|2
∑︁

|𝛼|=𝑘+1

∫︁
Ω

∫︁
𝐵

∫︁ 1

0

|𝐷𝛼𝑓(𝑡𝑦 + (1− 𝑡)𝑥)|2 𝑑𝑡 𝑑𝑦 𝑑𝑥.

We will get the result by changing variables and exchanging the 𝑡, 𝑦 and 𝑥 integrals. To avoid a singularity when
𝑡 = 0 or 𝑡 = 1, for each 𝛼 term we can split the 𝑡 integral into [0, 1/2] and [1/2, 1]. Call these terms I and II.

Denote by 𝑔𝛼 the extension by zero of 𝐷𝛼𝑓 to R𝑛. Then

𝐼 =

∫︁
𝐵

∫︁ 1/2

0

∫︁
R𝑛

|𝑔𝛼(𝑡𝑦 + (1− 𝑡)𝑥)|2 𝑑𝑥 𝑑𝑡 𝑑𝑦,

=

∫︁
𝐵

∫︁ 1/2

0

∫︁
R𝑛

|𝑔𝛼((1− 𝑡)𝑥)|2 𝑑𝑥 𝑑𝑡 𝑑𝑦,

=

∫︁
𝐵

∫︁ 1/2

0

∫︁
R𝑛

|𝑔𝛼(𝑧)|2(1− 𝑡)−𝑛 𝑑𝑧 𝑑𝑡 𝑑𝑦,

≤ 2𝑛−1|𝐵|
∫︁
Ω

|𝐷𝛼𝑓(𝑧)|2 𝑑𝑧.

Similarly, for 𝐼𝐼 ,

𝐼𝐼 =

∫︁
𝐵

∫︁ 1

1/2

∫︁
R𝑛

|𝑔𝛼(𝑡𝑦 + (1− 𝑡)𝑥)|2 𝑑𝑥 𝑑𝑡 𝑑𝑦,

=

∫︁
𝐵

∫︁ 1

1/2

∫︁
R𝑛

|𝑔𝛼(𝑡𝑦)|2 𝑑𝑥 𝑑𝑡 𝑑𝑦,

=

∫︁
𝐵

∫︁ 1

1/2

∫︁
R𝑛

|𝑔𝛼(𝑧)|2𝑡−𝑛 𝑑𝑧 𝑑𝑡 𝑑𝑦,

≤ 2𝑛−1|𝐵|
∫︁
Ω

|𝐷𝛼𝑓(𝑧)|2 𝑑𝑧.

Hence, we obtain the required bounds for |𝛽| = 0. For higher derivatives we use the fact that

𝐷𝛽𝑄𝑘,𝐵𝑓(𝑥) = 𝑄𝑘−|𝛽|,𝐵𝐷
𝛽𝑓(𝑥),

which immediately leads to the estimate for |𝛽| > 0.

Now we develop this into an estimate that depends on the diameter of the triangle we are interpolating to.

Corollary 3.19 Let 𝐾1 be a triangle with diameter 1. There exists a constant 𝐶(𝑘, 𝑛) such that

‖𝑓 −𝑄𝑘,𝐵𝑓‖𝐻𝑘(𝐾1) ≤ 𝐶|𝑓 |𝐻𝑘+1(𝐾1).

Proof 3.20 Take the maximum over the constants for the derivative contributions of the left-hand side with 𝑑 = 1
and use the previous result.
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3.4 Local and global interpolation errors

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

The following exercises give a specific example of the interpolation error results of this section without directly
using the previous estimate (because they specialise to 𝐿2, 1D and linear elements).

Exercise 3.21 Let 𝑤 ∈ 𝐶2([0, 1]), with 𝑤(0) = 𝑤(1) = 0. Show that∫︁ 1

0

𝑤(𝑥)2 𝑑𝑥 ≤ 𝑐

∫︁ 1

0

(𝑤′′(𝑥))2 𝑑𝑥.

Hints: use the Schwarz inequality,(︂∫︁ 1

0

𝑓(𝑥)𝑔(𝑥) 𝑑𝑥

)︂2

≤
(︂∫︁ 1

0

𝑓(𝑥)2 𝑑𝑥

)︂(︂∫︁ 1

0

𝑔(𝑥)2 𝑑𝑥

)︂
,

(which we shall discuss in more generality in Section 4), together with Rolle’s theorem.

Exercise 3.22 Using the previous exercise, show that for all 𝑢 ∈ 𝐶2([0, 1]), there exists a constant 𝑐 such that∫︁ 1

0

(𝑢(𝑥)− ℐ[0,1]𝑢(𝑥))2 𝑑𝑥 ≤ 𝑐

∫︁ 1

0

𝑢′′(𝑥)2 𝑑𝑥,

where ℐ[0,1] is the interpolator to the finite element with 𝐾 = [0, 1], 𝑃 is the linear polynomials on 𝐾, and the
nodal variables are 𝑁0[𝑝] = 𝑝(0) and 𝑁1[𝑝] = 𝑝(1).

Exercise 3.23 Using the previous exercise, show that for all 𝑢 ∈ 𝐶2([𝑎, 𝑏]), there exists a constant 𝑐 such that∫︁ 𝑏

𝑎

(𝑢(𝑥)− ℐ[𝑎,𝑏]𝑢(𝑥))2 𝑑𝑥 ≤ 𝑐(𝑏− 𝑎)4
∫︁ 𝑏

𝑎

𝑢′′(𝑥)2 𝑑𝑥,

where ℐ[𝑎,𝑏] is the interpolator to the finite element with 𝐾 = [𝑎, 𝑏], 𝑃 is the linear polynomials on 𝐾, and the
nodal variables are 𝑁0[𝑝] = 𝑝(𝑎) and 𝑁1[𝑝] = 𝑝(𝑏).

Exercise 3.24 Using the previous exercise, show that for a P1 finite element space defined on the interval [𝑎, 𝑏]
with maximum mesh cell width ℎ, then there exists a constant 𝑐 such that∫︁ 𝑏

𝑎

(𝑢(𝑥)− ℐℎ𝑢(𝑥))2 𝑑𝑥 ≤ 𝑐ℎ4
∫︁ 𝑏

𝑎

𝑢′′(𝑥)2 𝑑𝑥,

where ℐℎ is the global nodal interpolator to the P1 finite element space.

Exercise 3.25 Under the same assumptions as the previous exercise, prove the following finite element version of
Sobolev’s inequality,

‖𝑣‖2𝐶0 ≤ 𝐶

∫︁ 1

0

(𝑣′)2 𝑑𝑥,

for all 𝑣 ∈ 𝑉 , where 𝑉 is the subspace of the P1 finite element space defined on a subdivision of the interval [0, 1]
containing only functions 𝑣 with 𝑣(0) = 0.

Now we will use the Taylor polynomial estimates to derive error estimates for the local interpolation operator. We
start by looking at a triangle with diameter 1, and then use a scaling argument to obtain error estimates in terms of
the diameter ℎ. It begins by getting the following bound.

Lemma 3.26 Let (𝐾1,𝒫,𝒩 ) be a finite element such that 𝐾1 is a triangle with diameter 1, and such that the
nodal variables in 𝒩 involve only evaluations of functions or evaluations of derivatives of degree ≤ 𝑙, and
‖𝑁𝑖‖𝐶𝑙,∞(𝐾1)′ <∞,

‖𝑁𝑖‖𝐶𝑙,∞(𝐾1)′ = sup
‖𝑢‖

𝐶𝑙,∞(𝐾1)
>0

|𝑁𝑖(𝑢)|
‖𝑢‖𝐶𝑙,∞(𝐾1)

(Dual norm of 𝑁𝑖)

Let 𝑘 − 𝑙 > 𝑛/2, and 𝑢 ∈ 𝐶𝑘,∞(Ω). Then

‖ℐ𝐾1𝑢‖𝐻𝑘(𝐾1) ≤ 𝐶‖𝑢‖𝐻𝑘(𝐾1).
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Proof 3.27 Let {𝜑𝑖}𝑛𝑖=1 be the nodal basis for 𝒫 . Then

‖ℐ𝐾1
𝑢‖𝐻𝑘(𝐾1) ≤

𝑘∑︁
𝑖=1

‖𝜑𝑖‖𝐻𝑘(𝐾1)|𝑁𝑖(𝑢)|

≤
𝑘∑︁

𝑖=1

‖𝜑𝑖‖𝐻𝑘(𝐾1)‖𝑁𝑖‖𝐶𝑙,∞(𝐾1)′⏟  ⏞  
𝐶0

‖𝑢‖𝐶𝑙,∞(𝐾1),

≤ 𝐶‖𝑢‖𝐻𝑘(𝐾1),

where the Sobolev inequality was used in the last line.

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

Now we can directly apply this to the interpolation operator error estimate on the triangle with diameter 1. It is the
standard trick of adding and subtracting something, in this case the Taylor polynomial.

Lemma 3.28 Let (𝐾1,𝒫,𝒩 ) be a finite element such that𝐾1 has diameter 1, and such that the nodal variables in
𝒩 involve only evaluations of functions or evaluations of derivatives of degree ≤ 𝑙, and 𝒫 contain all polynomials
of degree 𝑘 and below, with 𝑘 > 𝑙 + 𝑛/2. Let 𝑢 ∈ 𝐶𝑘+1,∞(𝐾1). Then for 𝑖 ≤ 𝑘, the local interpolation operator
satisfies

|ℐ𝐾1𝑢− 𝑢|𝐻𝑖(𝐾1) ≤ 𝐶1|𝑢|𝐻𝑘+1(𝐾1).

Proof 3.29
|ℐ𝐾1

𝑢− 𝑢|2𝐻𝑖(𝐾1)
≤ ‖ℐ𝐾1

𝑢− 𝑢‖2𝐻𝑘(𝐾1)

= ‖ℐ𝐾1𝑢−𝑄𝑘,𝐵𝑢+𝑄𝑘,𝐵𝑢− 𝑢‖2𝐻𝑘(𝐾1)

≤ ‖𝑄𝑘,𝐵𝑢− 𝑢‖2𝐻𝑘(𝐾1)
+ ‖ℐ(𝑢−𝑄𝑘,𝐵𝑢)‖2𝐻𝑘(𝐾1)

,

≤ ‖𝑄𝑘,𝐵𝑢− 𝑢‖2𝐻𝑘(𝐾1)
+ 𝐶2‖𝑄𝑘,𝐵𝑢− 𝑢‖2𝐻𝑘(𝐾1)

,

≤ (1 + 𝐶2)|𝑢|2𝐻𝑘+1(𝐾1)
,

where we used the fact that ℐ𝐾1
𝑄𝑘,𝐵𝑢 = 𝑄𝑘,𝐵𝑢 in the second line and the previous lemma in the third line.

A video recording of the following material is available here.

Now we apply a scaling argument to translate this to triangles with diameter ℎ.

Lemma 3.30 Let (𝐾,𝒫,𝒩 ) be a finite element such that 𝐾 has diameter 𝑑, and such that the nodal variables in
𝒩 involve only evaluations of functions or evaluations of derivatives of degree ≤ 𝑙, and 𝒫 contains all polynomials
of degree 𝑘 and below, with 𝑘 > 𝑙 + 𝑛/2. Let 𝑢 ∈ 𝐶𝑘+1,∞(𝐾). Then for 𝑖 ≤ 𝑘, the local interpolation operator
satisfies

|ℐ𝐾𝑢− 𝑢|𝐻𝑖(𝐾) ≤ 𝐶𝐾𝑑
𝑘+1−𝑖|𝑢|𝐻𝑘+1(𝐾).

where 𝐶𝐾 is a constant that depends on the shape of 𝐾 but not the diameter.

Proof 3.31 Consider the change of variables 𝑥→ 𝜑(𝑥) = 𝑥/𝑑. This map takes 𝐾 to 𝐾1 with diameter 1. Then∫︁
𝐾

|𝐷𝛽(𝐼𝐾𝑢− 𝑢)|2 𝑑𝑥 = 𝑑−2|𝛽|+𝑛

∫︁
𝐾1

|𝐷𝛽(𝐼𝐾1
𝑢 ∘ 𝜑− 𝑢 ∘ 𝜑)|2 𝑑𝑥,

≤ 𝐶2
1𝑑

−2|𝛽|+𝑛
∑︁

|𝛼|=𝑘+1

∫︁
𝐾1

|𝐷𝛼𝑢 ∘ 𝜑|2 𝑑𝑥,

≤ 𝐶2
1𝑑

−2|𝛽|+2(𝑘+1)
∑︁

|𝛼|=𝑘+1

∫︁
𝐾

|𝐷𝛼𝑢|2 𝑑𝑥,

= 𝐶2
1𝑑

2(−|𝛽|+𝑘+1)|𝑢|2𝐻𝑘+1(𝐾),
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and taking the square root gives the result.

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

So far we have just developed an error estimate for the local interpolator on a single triangle. Now we extend this
to finite element spaces defined on the whole triangulation.

Theorem 3.32 Let 𝒯 be a triangulation of Ω with finite elements (𝐾𝑖,𝒫𝑖,𝒩𝑖), such that the minimum aspect ratio
𝛾 of the triangles𝐾𝑖 satisfies 𝛾 > 0, and such that the nodal variables in 𝒩 involve only evaluations of functions or
evaluations of derivatives of degree ≤ 𝑙, and 𝒫 contains all polynomials of degree 𝑘 and below, with 𝑘 > 𝑙+𝑛/2.
Let 𝑢 ∈ 𝐶𝑘+1,∞(𝐾1). Let ℎ be the maximum over all of the triangle diameters, with 0 ≤ ℎ < 1. Then for 𝑖 ≤ 𝑘,
the global interpolation operator satisfies

‖ℐℎ𝑢− 𝑢‖𝐻𝑖(Ω) ≤ 𝐶ℎ𝑘+1−𝑖|𝑢|𝐻𝑘+1(Ω).

(Recalling that we use the “broken” finite element derivative in norms for ℐℎ𝑢 over Ω.

Proof 3.33

‖ℐℎ𝑢− 𝑢‖2𝐻𝑖(Ω) =
∑︁
𝐾∈𝒯

‖ℐ𝐾𝑢− 𝑢‖2𝐻𝑖(𝐾),

≤
∑︁
𝐾∈𝒯

𝐶𝐾𝑑
2(𝑘+1−𝑖)
𝐾 |𝑢|2𝐻𝑘+1(𝐾),

≤ 𝐶maxℎ
2(𝑘+1−𝑖)

∑︁
𝐾∈𝒯

|𝑢|2𝐻𝑘+1(𝐾),

= 𝐶maxℎ
2(𝑘+1−𝑖)|𝑢|2𝐻𝑘+1(Ω),

where the existence of the 𝐶max = max𝐾 𝐶𝐾 <∞ is due to the lower bound in the aspect ratio.

In this section, we have built a theoretical toolbox for the interpolation of functions to finite element spaces. In the
next section, we move on to studying the solveability of finite element approximations.

3.4. Local and global interpolation errors 27
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CHAPTER

FOUR

FINITE ELEMENT PROBLEMS: SOLVABILITY AND STABILITY

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

In section 1, we saw the example of a finite element approximation for Poisson’s equation in the unit square, which
we now recall below.

Definition 4.1 The finite element approximation 𝑢ℎ ∈ 𝑉ℎ to the solution 𝑢ℎ of Poisson’s equation is defined by∫︁
Ω

∇𝑣 · ∇𝑢ℎ 𝑑𝑥 =

∫︁
Ω

𝑣𝑓 𝑑𝑥, ∀𝑣 ∈ 𝑉ℎ. (4.1)

A fundamental question is whether the solution 𝑢ℎ exists and is unique. This question is of practical interest
because if these conditions are not satisfied, then the matrix-vector system for the basis coefficients of 𝑢ℎ will
not be solvable. To answer this question for this approximation (and others for related equations), we will use
some general mathematical machinery about linear problems defined on Hilbert spaces. It will turn out that this
machinery will also help us show that the approximation 𝑢ℎ converges to the exact solution 𝑢 (and in what sense).

4.1 Finite element spaces and other Hilbert spaces

In the previous sections, we introduced the concept of finite element spaces, which contain certain functions defined
on a domain Ω. Finite element spaces are examples of vector spaces (hence the use of the word “space”).

Definition 4.2 (Vector space) A vector space over the real numbers R is a set 𝑉 , with an addition operator + :
𝑉 × 𝑉 → 𝑉 , plus a scalar multiplication operator × : R× 𝑉 → 𝑉 , such that:

1. There exists a unique zero element 𝑒 ∈ 𝑉 such that:

• 𝑘 × 𝑒 = 𝑒 for all 𝑘 ∈ R,

• 0× 𝑣 = 𝑒 for all 𝑣 ∈ 𝑉 ,

• 𝑒+ 𝑣 = 𝑣 for all 𝑣 ∈ 𝑉 .

2. 𝑉 is closed under addition and multiplication, i.e.,
𝑎× 𝑢+ 𝑣 ∈ 𝑉 for all 𝑢, 𝑣 ∈ 𝑉 , 𝑎 ∈ R.

Lemma 4.3 Let 𝑉 be a finite element space. Then 𝑉 is a vector space.

Proof 4.4 First, we note that the zero function 𝑢(𝑥) := 0 is in 𝑉 , and satisfies the above properties. Further, let
𝑢, 𝑣 ∈ 𝑉 , and 𝑎 ∈ R. Then, when restricted to each triangle 𝐾𝑖, 𝑢+ 𝑎𝑣 ∈ 𝑃𝑖. Also, for each shared mesh entity,
the shared nodal variables agree between triangles. Therefore, 𝑢+ 𝑎𝑣 ∈ 𝑉 .

We now introduce bilinear forms on vector spaces. Bilinear forms are important because they will represent the
left hand side of finite element approximations of linear PDEs.

Definition 4.5 (Bilinear form) A bilinear form 𝑏(·, ·) on a vector space 𝑉 is a mapping 𝑏 : 𝑉 ×𝑉 →
R, such that

1. 𝑣 → 𝑏(𝑣, 𝑤) is a linear map in 𝑣 for all 𝑤.
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2. 𝑣 → 𝑏(𝑤, 𝑣) is a linear map in 𝑣 for all 𝑤.

It is a symmetric bilinear form if in addition, 𝑏(𝑣, 𝑤) = 𝑏(𝑤, 𝑣), for all 𝑣, 𝑤 ∈ 𝑉 .

Here are two important examples of bilinear forms on finite element spaces.

Example 4.6 Let 𝑉ℎ be a finite element space. The following are bilinear forms on 𝑉ℎ,

𝑏(𝑢, 𝑣) =

∫︁
Ω

𝑢𝑣 𝑑𝑥,

𝑏(𝑢, 𝑣) =

∫︁
Ω

∇𝑢 · ∇𝑣 𝑑𝑥.

To turn a vector space into a Hilbert space, we need to select an inner product.

Definition 4.7 (Inner product) A real inner product, denoted by (·, ·), is a symmetric bilinear form on a vector
space 𝑉 with

1. (𝑣, 𝑣) ≥ 0 ∀𝑣 ∈ 𝑉 ,

2. (𝑣, 𝑣) = 0 ⇐⇒ 𝑣 = 0.

This enables the following definition.

Definition 4.8 (Inner product space) We call a vector space (𝑉, (·, ·)) equipped with an inner product an inner
product space.

We now introduce two important examples of inner products for finite element spaces.

Definition 4.9 ((L^2) inner product) Let 𝑓 , 𝑔 be two functions in 𝐿2(Ω). The 𝐿2 inner product between 𝑓 and 𝑔
is defined as

(𝑓, 𝑔)𝐿2 =

∫︁
Ω

𝑓𝑔 𝑑𝑥.

The𝐿2 inner product satisfies condition 2 provided that we understand functions in𝐿2 as being equivalence classes
of functions under the relation 𝑓 ≡ 𝑔 ⇐⇒

∫︀
Ω
(𝑓 − 𝑔)2 𝑑𝑥 = 0.

Definition 4.10 ((H^1) inner product) Let 𝑓 , 𝑔 be two𝐶0 finite element functions. The𝐻1 inner product between
𝑓 and 𝑔 is defined as

(𝑓, 𝑔)𝐻1 =

∫︁
Ω

𝑓𝑔 +∇𝑓 · ∇𝑔 𝑑𝑥.

The 𝐻1 inner product satisfies condition 2 since

(𝑓, 𝑓)𝐿2 ≤ (𝑓, 𝑓)𝐻1 .

The Schwarz inequality is a useful tool for bounding the size of inner products.

Theorem 4.11 (Schwarz inequality) If (𝑉, (·, ·)) is an inner product space, then

|(𝑢, 𝑣)| ≤ (𝑢, 𝑢)1/2(𝑣, 𝑣)1/2.

Equality holds if and only if 𝑢 = 𝛼𝑣 for some 𝛼 ∈ R.

Proof 4.12 See a course on vector spaces.

Our solvability conditions will make use of norms that measure the size of elements of a vector space (the size of
finite element functions, in our case).

Definition 4.13 (Norm) Given a vector space 𝑉 , a norm ‖ · ‖ is a function from 𝑉 to R, with

1. ‖𝑣‖ ≥ 0, ∀𝑣 ∈ 𝑉 ,

2. ‖𝑣‖ = 0 ⇐⇒ 𝑣 = 0,

3. ‖𝑐𝑣‖ = |𝑐|‖𝑣‖ ∀𝑐 ∈ R, 𝑣 ∈ 𝑉 ,
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4. ‖𝑣 + 𝑤‖ ≤ ‖𝑣‖+ ‖𝑤‖.

For inner product spaces, there is a natural choice of norm.

Lemma 4.14 Let (𝑉, (·, ·)) be an inner product space. Then ‖𝑣‖ =
√︀
(𝑣, 𝑣) defines a norm on 𝑉 .

Proof 4.15 From bilinearity we have

‖𝛼𝑣‖ =
√︀

(𝛼𝑣, 𝛼𝑣) =
√︀
𝛼2(𝑣, 𝑣) = |𝛼|‖𝑣‖,

hence property 3.

‖𝑣‖ = (𝑣, 𝑣)1/2 ≥ 0, hence property 1.

If 0 = ‖𝑣‖ = (𝑣, 𝑣)1/2 =⇒ (𝑣, 𝑣) = 0 =⇒ 𝑣 = 0, hence property 2.

We finally check the triangle inequality (property 4).

‖𝑢+ 𝑣‖2 = (𝑢+ 𝑣, 𝑢+ 𝑣)

= (𝑢, 𝑢) + 2(𝑢, 𝑣) + (𝑣, 𝑣)

= ‖𝑢‖2 + 2(𝑢, 𝑣) + ‖𝑣‖2

≤ ‖𝑢‖2 + 2‖𝑢‖‖𝑣‖+ ‖𝑣‖2 [Schwarz],
= (‖𝑢‖+ ‖𝑣‖)2,

hence ‖𝑢+ 𝑣‖ ≤ ‖𝑢‖+ ‖𝑣‖.

We introduce the following useful term.

Definition 4.16 (Normed space) A vector space 𝑉 with a norm ‖ · ‖ is called a normed vector space, written
(𝑉, ‖ · ‖).

To finish our discussion of Hilbert spaces, we need to review the concept of completeness (which you might have
encountered in an analysis course). This seems not so important since finite element spaces are finite dimensional,
but later we shall consider sequences of finite element spaces with smaller and smaller triangles, where complete-
ness becomes important.

Completeness depends on the notion of a Cauchy sequence.

Definition 4.17 (Cauchy sequence) A Cauchy sequence on a normed vector space (𝑉, ‖·‖) is a sequence {𝑣𝑖}∞𝑖=1

satisfying ‖𝑣𝑗 − 𝑣𝑘‖ → 0 as 𝑗, 𝑘 → ∞.

This definition leads to the definition of completeness.

Definition 4.18 (Complete normed vector space) A normed vector space (𝑉, ‖ · ‖) is complete if all Cauchy se-
quences have a limit 𝑣 ∈ 𝑉 such that ‖𝑣 − 𝑣𝑗‖ → 0 as 𝑗 → ∞.

Finally, we reach the definition of a Hilbert space.

Definition 4.19 (Hilbert space) An inner product space (𝑉, (·, ·)) is a Hilbert space if the corresponding normed
space (𝑉, ‖ · ‖) is complete.

All finite dimensional normed vector spaces are complete. Hence, 𝐶0 finite element spaces equipped with 𝐿2 or
𝐻1 inner products are Hilbert spaces. Later we shall understand our finite element spaces as subspaces of infinite
dimensional Hilbert spaces.

4.2 Linear forms on Hilbert spaces

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

We will now build some structures on Hilbert spaces that allow us to discuss variational problems on them, which
includes finite element approximations such as the Poisson example discussed so far.

Linear functionals are important as they will represent the right-hand side of finite element approximations of
PDEs.

4.2. Linear forms on Hilbert spaces 31
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Definition 4.20 (Continuous linear functional) Let 𝐻 be a Hilbert space with norm | · |𝐻 .

1. A functional 𝐿 is a map from 𝐻 to R.

2. A functional 𝐿 : 𝐻 → R is linear if 𝑢, 𝑣 ∈ 𝐻 , 𝛼 ∈ R =⇒ 𝐿(𝑢+ 𝛼𝑣) = 𝐿(𝑢) + 𝛼𝐿(𝑣).

3. A functional 𝐿 : 𝐻 → R is continuous if there exists 𝐶 > 0 such that

|𝐿(𝑢)− 𝐿(𝑣)| ≤ 𝐶‖𝑢− 𝑣‖𝐻 ∀𝑢, 𝑣 ∈ 𝐻.

It is important that linear functionals are “nice” in the following sense.

Definition 4.21 (Bounded functional) A functional 𝐿 : 𝐻 → R is bounded if there exists 𝐶 > 0 such that

|𝐿(𝑢)| ≤ 𝐶‖𝑢‖𝐻 , ∀𝑢 ∈ 𝐻.

For linear functionals we have the following relationship between boundedness and continuity.

Lemma 4.22 Let 𝐿 : 𝐻 → R be a linear functional. Then 𝐿 is continuous if and only if it is bounded.

Proof 4.23 𝐿 bounded =⇒ 𝐿(𝑢) ≤ 𝐶‖𝑢‖𝐻 =⇒ |𝐿(𝑢)− 𝐿(𝑣)| = |𝐿(𝑢− 𝑣)| ≤ 𝐶‖𝑢− 𝑣‖𝐻 ∀𝑢, 𝑣 ∈ 𝐻, i.e.
𝐿 is continuous.

On the other hand, 𝐿 continuous =⇒ |𝐿(𝑢 − 𝑣)| ≤ 𝐶‖𝑢 − 𝑣‖𝐻 ∀𝑢, 𝑣 ∈ 𝐻 . Pick 𝑣 = 0, then |𝐿(𝑢)| =
|𝐿(𝑢− 0)| ≤ 𝐶‖𝑢− 0‖𝐻 = 𝐶‖𝑢‖𝐻 , i.e. 𝐿 is bounded.

We can also interpret bounded linear functionals as elements of a vector space.

Definition 4.24 (Dual space) Let𝐻 be a Hilbert space. The dual space𝐻 ′ is the space of continuous (or bounded)
linear functionals 𝐿 : 𝐻 → R.

This dual space can also be equipped with a norm.

Definition 4.25 (Dual norm) Let 𝐿 be a continuous linear functional on 𝐻 , then

‖𝐿‖𝐻′ = sup
0̸=𝑣∈𝐻

𝐿(𝑣)

‖𝑣‖𝐻
.

There is a simple mapping from 𝐻 to 𝐻 ′.

Lemma 4.26 Let 𝑢 ∈ 𝐻 . Then the functional 𝐿𝑢 : 𝐻 → R defined by

𝐿𝑢(𝑣) = (𝑢, 𝑣), ∀𝑣 ∈ 𝐻,

is linear and continuous.

Proof 4.27 For 𝑣, 𝑤 ∈ 𝐻 , 𝛼 ∈ R we have

𝐿𝑢(𝑣 + 𝛼𝑤) = (𝑢, 𝑣 + 𝛼𝑤) = (𝑢, 𝑣) + 𝛼(𝑢,𝑤) = 𝐿𝑢(𝑣) + 𝛼𝐿𝑢(𝑤).

Hence 𝐿𝑢 is linear.

We see that 𝐿𝑢 is bounded by Schwarz inequality,

|𝐿𝑢(𝑣)| = |(𝑢, 𝑣)| ≤ 𝐶‖𝑣‖𝐻 with 𝐶 = ‖𝑢‖𝐻 .

The following famous theorem states that the converse is also true.

Theorem 4.28 (Riesz representation theorem) For any continuous linear functional 𝐿 on𝐻 there exists 𝑢 ∈ 𝐻
such that

𝐿(𝑣) = (𝑢, 𝑣) ∀𝑣 ∈ 𝐻.

Further,

‖𝑢‖𝐻 = ‖𝐿‖𝐻′ .

Proof 4.29 See a course or textbook on Hilbert spaces.
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4.3 Variational problems on Hilbert spaces

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

We will consider finite element methods that can be formulated in the following way.

Definition 4.30 (Linear variational problem) Let 𝑏(𝑢, 𝑣) be a bilinear form on a Hilbert space 𝑉 , and 𝐹 be a
linear form on 𝑉 . This defines a linear variational problem: find 𝑢 ∈ 𝑉 such that

𝑏(𝑢, 𝑣) = 𝐹 (𝑣), ∀𝑣 ∈ 𝑉.

We now discuss some important examples from finite element discretisations of linear PDEs.

Example 4.31 ((Pk) discretisation of (modified) Helmholtz problem with Neumann bcs) For some known
function 𝑓 ,

𝑏(𝑢, 𝑣) =

∫︁
Ω

𝑢𝑣 +∇𝑢 · ∇𝑣 𝑑𝑥,

𝐹 (𝑣) =

∫︁
Ω

𝑣𝑓 𝑑𝑥,

and 𝑉 is the Pk continuous finite element space on a triangulation of Ω.

Example 4.32 ((Pk) discretisation of Poisson equation with partial Dirichlet bcs) For some known function 𝑓 ,

𝑏(𝑢, 𝑣) =

∫︁
Ω

∇𝑢 · ∇𝑣 𝑑𝑥,

𝐹 (𝑣) =

∫︁
Ω

𝑣𝑓 𝑑𝑥,

and 𝑉 is the subspace of the Pk continuous finite element space on a triangulation of Ω such that functions vanishes
on Γ0 ⊆ 𝜕Ω.

Example 4.33 ((Pk) discretisation of Poisson equation with pure Neumann bcs) For some known function 𝑓 ,

𝑏(𝑢, 𝑣) =

∫︁
Ω

∇𝑢 · ∇𝑣 𝑑𝑥,

𝐹 (𝑣) =

∫︁
Ω

𝑣𝑓 𝑑𝑥,

and 𝑉 is the subspace of the Pk continuous finite element space on a triangulation of Ω such that functions satisfy∫︁
Ω

𝑢 𝑑𝑥 = 0.

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

We now introduce two important properties of bilinear forms that determine whether a linear variational problem
is solvable or not. The first is continuity.

Definition 4.34 (Continuous bilinear form) A bilinear form is continuous on a Hilbert space 𝑉 if there exists a
constant 0 < 𝑀 <∞ such that

|𝑏(𝑢, 𝑣)| ≤𝑀‖𝑢‖𝑉 ‖𝑣‖𝑉 .

The second is coercivity.

4.3. Variational problems on Hilbert spaces 33
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Definition 4.35 (Coercive bilinear form) A bilinear form is coercive on a Hilbert space 𝑉 if there exists a con-
stant 0 < 𝛾 <∞ such that

|𝑏(𝑢, 𝑢)| ≥ 𝛾‖𝑢‖𝑉 ‖𝑢‖𝑉 .

These two properties combine in the following theorem providing sufficient conditions for existence and uniqueness
for solutions of linear variational problems.

Theorem 4.36 (Lax-Milgram theorem) Let 𝑏 be a bilinear form, 𝐹 be a linear form, and (𝑉, ‖ · ‖) be a Hilbert
space. If 𝑏 is continuous and coercive, and 𝐹 is continuous, then a unique solution 𝑢 ∈ 𝑉 to the linear variational
problem exists, with

‖𝑢‖𝑉 ≤ 1

𝛾
‖𝐹‖𝑉 ′ .

Proof 4.37 See a course or textbook on Hilbert spaces.

We are going to use this result to show solvability for finite element discretisations. In particular, we also want to
know that our finite element discretisation continues to be solvable as the maximum triangle edge diameter ℎ goes
to zero. This motivates the following definition.

Definition 4.38 (Stability) Consider a sequence of triangulations 𝒯ℎ with corresponding finite element spaces 𝑉ℎ
labelled by a maximum triangle diameter ℎ, applied to a variational problem with bilinear form 𝑏(𝑢, 𝑣) and linear
form 𝐿. For each 𝑉ℎ we have a corresponding coercivity constant 𝛾ℎ.

If 𝛾ℎ → 𝛾 > 0, and ‖𝐹‖𝑉 ′
ℎ
→ 𝑐 <∞, then we say that the finite element discretisation is stable.

With this in mind it is useful to consider ℎ-independent definitions of ‖ · ‖𝑉 (such as the 𝐿2 and𝐻1 norms), which
is why we introduced them.

4.4 Solvability and stability of some finite element discretisations

In this section we will introduce some tools for showing coercivity and continuity of bilinear forms, illustrated with
finite element approximations of some linear PDEs where they may be applied.

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

We start with the simplest example, for which continuity and coercivity are immediate.

Theorem 4.39 (Solving the (modified) Helmholtz problem) Let 𝑏, 𝐿 be the forms from the Helmholtz problem,
with ‖𝑓‖𝐿2 < ∞. Let 𝑉ℎ be a Pk continuous finite element space defined on a triangulation 𝒯 . Then the finite
element approximation 𝑢ℎ exists and the discretisation is stable in the 𝐻1 norm.

Proof 4.40 First we show continuity of 𝐹 . We have

𝐹 (𝑣) =

∫︁
Ω

𝑓𝑣 𝑑𝑥 ≤ ‖𝑓‖𝐿2‖𝑣‖𝐿2 ≤ ‖𝑓‖𝐿2‖𝑣‖𝐻1 ,

since ‖𝑣‖𝐿2 ≤ ‖𝑣‖𝐻1 .

Next we show continuity of 𝑏.

|𝑏(𝑢, 𝑣)| = |(𝑢, 𝑣)𝐻1 | ≤ 1× ‖𝑢‖𝐻1‖𝑣‖𝐻1 ,

from the Schwarz inequality of the 𝐻1 inner product. Finally we show coercivity of 𝑏.

𝑏(𝑢, 𝑢) = ‖𝑢‖2𝐻1 ≥ 1× ‖𝑢‖2𝐻1 ,

The continuity and coercivity constants are both 1, independent of ℎ, so the discretisation is stable.
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Exercise 4.41 Let 𝑉 be a 𝐶0 finite element space on [0, 1], defined on a one-dimensional mesh with
vertices 0 = 𝑥0 < 𝑥1 < 𝑥2 < . . . < 𝑥𝑛−1 < 𝑥𝑛 = 1. Show that 𝑢 ∈ 𝑉 satisfies the fundamental
theorem of calculus, 𝑖.𝑒. ∫︁ 1

0

𝑢′ 𝑑𝑥 = 𝑢[1]− 𝑢[0],

where 𝑢′ is the usual finite element derivative defined in 𝐿2([0, 1]) by taking the usual derivative when restricting
𝑢 to any subinterval [𝑥𝑘, 𝑥𝑘+1].

Exercise 4.42 Let

𝑎(𝑢, 𝑣) =

∫︁ 1

0

(𝑢′𝑣′ + 𝑢′𝑣 + 𝑢𝑣) 𝑑𝑥.

Let 𝑉 be a 𝐶0 finite element space on [0, 1] and let 𝑉 be the subspace of functions that vanish at 𝑥 = 0 and 𝑥 = 1.
Using the finite element version of the fundamental theorem of calculus above, prove that

𝑎(𝑣, 𝑣) =

∫︁ 1

0

(︀
(𝑣′)2 + 𝑣2

)︀
𝑑𝑥 := ‖𝑣‖2𝐻1 , ∀𝑣 ∈ 𝑉 .

Hence conclude that the bilinear form is coercive on 𝑉 .

Exercise 4.43 Consider the variational problem with bilinear form

𝑎(𝑢, 𝑣) =

∫︁ 1

0

(𝑢′𝑣′ + 𝑢′𝑣 + 𝑢𝑣) 𝑑𝑥,

corresponding to the differential equation

−𝑢′′ + 𝑢′ + 𝑢 = 𝑓.

Prove that 𝑎(·, ·) is continuous and coercive on a 𝐶0 finite element space 𝑉 defined on [0, 1], with respect to the
𝐻1 inner product.

Hints: for continuity, just use the triangle inequality and the relationship between𝐿2 and𝐻1 norms. For coercivity,
try completing the square for the integrand in 𝑎.

For the Helmholtz problem, we have

𝑏(𝑢, 𝑣) =

∫︁
Ω

𝑢𝑣 +∇𝑢 · ∇𝑣 𝑑𝑥 = (𝑢, 𝑣)𝐻1 ,

i.e. 𝑏(𝑢, 𝑣) is the 𝐻1 inner product of 𝑢 and 𝑣, which makes the continuity and coercivity immediate.

For the Poisson problem, we have

𝑏(𝑢, 𝑢) =

∫︁
Ω

|∇𝑢|2 𝑑𝑥 = |𝑢|2𝐻1 ̸= ‖𝑢‖2𝐻1 ,

where we recall the 𝐻1 seminorm from the interpolation section. Some additional results are required to show
coercivity, as 𝑏(𝑢, 𝑢) is not the 𝐻1 norm squared any more. A seminorm has all the properties of a norm except
|𝑢| = 0 ⇏ 𝑢 = 0, which is precisely what is needed in the Lax-Milgram theorem.

Exercise 4.44 Let 𝒯ℎ be a triangulation on the 1×1 unit square domainΩ, and let𝑉 be a𝐶0 Lagrange
finite element space of degree 𝑘 defined on 𝒯ℎ. A finite element discretisation for the Poisson equation
with Neumann boundary conditions is given by: find 𝑢 ∈ 𝑉 such that

∫︁
Ω

∇𝑣 · ∇𝑢 𝑑𝑥 =

∫︁
Ω

𝑣𝑓 𝑑𝑥, ∀𝑣 ∈ 𝑉,

for some known function 𝑓 . Show that the bilinear form for this problem is not coercive in 𝑉 .

For the Poisson problem, coercivity comes instead from the following mean estimate.
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Lemma 4.45 (Mean estimate for finite element spaces) Let 𝑢 be a member of a 𝐶0 finite element space, and
define

�̄� =

∫︀
Ω
𝑢 𝑑𝑥∫︀

Ω
𝑑𝑥

.

Then there exists a positive constant 𝐶, independent of the triangulation but dependent on (convex) Ω, such that

‖𝑢− �̄�‖𝐿2 ≤ 𝐶|𝑢|𝐻1 .

A video recording of the first part of the following material is available here.

Imperial students can also watch this video on Panopto

A video recording of the second part of section is available here.

Imperial students can also watch this video on Panopto

Proof 4.46 (Very similar to the proof of the estimate for averaged Taylor polynomials.)

Let 𝑥 and 𝑦 be two points in Ω. We note that 𝑓(𝑠) = 𝑢(𝑦+ 𝑠(𝑥− 𝑦)) is a 𝐶0, piecewise polynomial function of 𝑠.
Let 𝑠0 = 0 < 𝑠1 < 𝑠2 < . . . < 𝑠𝑘−1 < 𝑠𝑘 = 1 denote the points where 𝑦 + 𝑠(𝑥− 𝑦) intersects a triangle edge or
vertex. Then 𝑓 is a continuous function when restricted to each interval [𝑠𝑖, 𝑠𝑖+1], 𝑖 = 0, . . . , 𝑘 − 1. This means
that

𝑓(𝑠𝑖+1)− 𝑓(𝑠𝑖) =

∫︁ 𝑠𝑖+1

𝑠𝑖

𝑓 ′(𝑠) 𝑑𝑠

=

∫︁ 𝑠𝑖+1

𝑠𝑖

(𝑥− 𝑦) · ∇𝑢(𝑦 + 𝑠(𝑥− 𝑦)) 𝑑𝑠,

where ∇𝑢 is the finite element derivative of 𝑢. Summing this up from 𝑖 = 0 to 𝑖 = 𝑘 − 1, we obtain

𝑢(𝑥) = 𝑢(𝑦) +

∫︁ 1

0

(𝑥− 𝑦) · ∇𝑢(𝑦 + 𝑠(𝑥− 𝑦)) 𝑑𝑠.

Then

𝑢(𝑥)− �̄� =
1

|Ω|

∫︁
Ω

𝑢(𝑥)− 𝑢(𝑦) 𝑑𝑦

=
1

|Ω|

∫︁
Ω

(𝑥− 𝑦) ·
∫︁ 1

𝑠=0

∇𝑢(𝑦 + 𝑠(𝑥− 𝑦)) 𝑑𝑠 𝑑𝑦,

Therefore

‖𝑢− �̄�‖2𝐿2(Ω) =
1

|Ω|2

∫︁
Ω

(︂∫︁
Ω

(𝑥− 𝑦) ·
∫︁ 1

𝑠=0

∇𝑢(𝑦 + 𝑠(𝑥− 𝑦)) 𝑑𝑠 𝑑𝑦

)︂2

𝑑𝑥,

≤ 1

|Ω|2

∫︁
Ω

∫︁
Ω

|𝑥− 𝑦|2 𝑑𝑦
∫︁
Ω

∫︁ 1

𝑠=0

|∇𝑢(𝑦 + 𝑠(𝑥− 𝑦))|2 𝑑𝑠 𝑑𝑦 𝑑𝑥,

≤ 𝐶

∫︁
Ω

∫︁
Ω

∫︁ 1

𝑠=0

|∇𝑢(𝑦 + 𝑠(𝑥− 𝑦))|2 𝑑𝑠 𝑑𝑦 𝑑𝑥.

We split this final quantity into two parts (to avoid singularities),

‖𝑢− �̄�‖2𝐿2(Ω) ≤ 𝐶(𝐼 + 𝐼𝐼),
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where

𝐼 =

∫︁
Ω

∫︁ 1/2

𝑠=0

∫︁
Ω

|∇𝑢(𝑦 + 𝑠(𝑥− 𝑦))|2 𝑑𝑦 𝑑𝑠 𝑑𝑥,

𝐼𝐼 =

∫︁
Ω

∫︁ 2

𝑠=1/2

∫︁
Ω

|∇𝑢(𝑦 + 𝑠(𝑥− 𝑦))|2 𝑑𝑥 𝑑𝑠 𝑑𝑦,

which we will now estimate separately.

To evaluate 𝐼 , change variables 𝑦 → 𝑦′ = 𝑦 + 𝑠(𝑥 − 𝑦), defining Ω′
𝑠 ⊂ Ω as the image of Ω under this transfor-

mation. Then,

𝐼 =

∫︁
Ω

∫︁ 1/2

𝑠=0

1

(1− 𝑠)2

∫︁
Ω′

𝑠

|∇𝑢(𝑦′)|2 𝑑𝑦′ 𝑑𝑠 𝑑𝑥,

≤
∫︁
Ω

∫︁ 1/2

𝑠=0

1

(1− 𝑠)2

∫︁
Ω

|∇𝑢(𝑦′)|2 𝑑𝑦′ 𝑑𝑠 𝑑𝑥,

=
|Ω|
2

|∇𝑢|2𝐻1(Ω).

To evaluate 𝐼𝐼 , change variables 𝑥 → 𝑥′ = 𝑦 + 𝑠(𝑥 − 𝑦), defining Ω′
𝑠 ⊂ Ω as the image of Ω under this

transformation. Then,

𝐼𝐼 =

∫︁
Ω

∫︁ 2

𝑠=1/2

1

𝑠2

∫︁
Ω′

𝑠

|∇𝑢(𝑥′)|2 𝑑𝑥′ 𝑑𝑠 𝑑𝑦,

≤
∫︁
Ω

∫︁ 1/2

𝑠=0

1

𝑠2

∫︁
Ω

|∇𝑢(𝑥′)|2 𝑑𝑥′ 𝑑𝑠 𝑑𝑦,

= |Ω||∇𝑢|2𝐻1(Ω).

Combining,

‖𝑢− �̄�‖2𝐿2(Ω) ≤ 𝐶(𝐼 + 𝐼𝐼) =
3𝐶|Ω|

2
|𝑢|2𝐻1(Ω),

which has the required form.

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

The mean estimate can now be used to show solvability for the Poisson problem with pure Neumann conditions.

Theorem 4.47 (Solving the Poisson problem with pure Neumann conditions) Let 𝑏, 𝐿, 𝑉 , be the forms for the
pure Neumann Poisson problem, with ‖𝑓‖𝐿2 < ∞. Let 𝑉ℎ be a Pk continuous finite element space defined on a
triangulation 𝒯 , and define

𝑉ℎ = {𝑢 ∈ 𝑉ℎ : �̄� = 0}.

Then for 𝑉ℎ, the finite element approximation 𝑢ℎ exists and the discretisation is stable in the 𝐻1 norm.

Proof 4.48 Using the mean estimate, for 𝑢 ∈ 𝑉ℎ, we have

‖𝑢‖2𝐿2 = ‖𝑢− �̄�⏟ ⏞ 
=0

‖2𝐿2 ≤ 𝐶2|𝑢|2𝐻1 .

Hence we obtain the coercivity result,

‖𝑢‖2𝐻1 = ‖𝑢‖2𝐿2 + |𝑢|2𝐻1 ≤ (1 + 𝐶2)|𝑢|2𝐻1 = (1 + 𝐶2)𝑏(𝑢, 𝑢).

Continuity follows from Schwarz inequality,

|𝑏(𝑢, 𝑣)| ≤ |𝑢|𝐻1 |𝑣|𝐻1 ≤ ‖𝑢‖𝐻1‖𝑣‖𝐻1 .

The coercivity constant is independent of ℎ, so the approximation is stable.
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Proving the coercivity for the Poisson problem with Dirichlet or partial Dirichlet boundary conditions requires
some additional results. We start by showing that the divergence theorem also applies to finite element derivatives
of 𝐶0 finite element functions.

Lemma 4.49 (Finite element divergence theorem) Let 𝜑 be a 𝐶1 vector-valued function. and 𝑢 ∈ 𝑉 be a mem-
ber of a 𝐶0 finite element space. Then ∫︁

Ω

∇ · (𝜑𝑢) 𝑑𝑥 =

∫︁
𝜕Ω

𝜑 · 𝑛𝑢 𝑑𝑆,

where 𝑛 is the outward pointing normal to 𝜕Ω.

Proof 4.50 ∫︁
Ω

∇ · (𝜑𝑢) 𝑑𝑥 =
∑︁
𝐾∈𝒯

∫︁
𝐾

∇ · (𝜑𝑢) 𝑑𝑥,

=
∑︁
𝐾∈𝒯

∫︁
𝜕𝐾

𝜑 · 𝑛𝐾𝑢 𝑑𝑆,

=

∫︁
𝜕Ω

𝜑 · 𝑛𝑢 𝑑𝑆 +

∫︁
Γ

𝜑 · (𝑛+ + 𝑛−)𝑢 𝑑𝑆⏟  ⏞  
=0

.

This allows us to prove the finite element trace theorem, which relates the𝐻1 norm of a 𝐶0 finite element function
to the 𝐿2 norm of the function restricted to the boundary.

Theorem 4.51 (Trace theorem for continuous finite elements) Let 𝑉ℎ be a continuous finite element space, de-
fined on a triangulation 𝒯 , on a polygonal domain Ω. Then

‖𝑢‖𝐿2(𝜕Ω) ≤ 𝐶‖𝑢‖𝐻1(Ω),

where 𝐶 is a constant that depends only on the geometry of Ω.

Proof 4.52 The first step is to construct a 𝐶1 function 𝜉 satisfying 𝜉 · 𝑛 = 1 on Ω. We do this by finding a
triangulation 𝒯0 (unrelated to 𝒯 ), and defining an 𝐶1 Argyris finite element space 𝑉0 on it. We then choose 𝜉 so
that both Cartesian components are in 𝑉0, satisfying the boundary condition.

Then,

‖𝑢‖2𝐿2(𝜕Ω) =

∫︁
𝜕Ω

𝑢2 𝑑𝑆 =

∫︁
𝜕Ω

𝜉 · 𝑛𝑢2 𝑑𝑆,

=

∫︁
Ω

∇ · (𝜉𝑢2) 𝑑𝑥,

=

∫︁
Ω

𝑢2∇ · 𝜉 + 2𝑢𝜉 · ∇𝑢 𝑑𝑥,

≤ ‖𝑢‖2𝐿2‖∇ · 𝜉‖∞ + 2|𝜉|∞‖𝑢‖𝐿2 |𝑢|𝐻1 ,

So,

‖𝑢‖2𝐿2(𝜕Ω) ≤ ‖𝑢‖2𝐿2‖∇ · 𝜉‖∞ + |𝜉|∞
(︀
‖𝑢‖2𝐿2 + |𝑢|2𝐻1

)︀
,

≤ 𝐶‖𝑢‖2𝐻1 ,

where we have used the geometric-arithmetic mean inequality 2𝑎𝑏 ≤ 𝑎2 + 𝑏2.
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We can now use the trace inequality to estabilish solvability for the Poisson problem with (full or partial) Dirichlet
conditions.

Theorem 4.53 (Solving the Poisson problem with partial Dirichlet conditions) Let 𝑏, 𝐿, 𝑉 , be the forms for
the (partial) Dirichlet Poisson problem, with ‖𝑓‖𝐿2 <∞. Let 𝑉ℎ be a Pk continuous finite element space defined
on a triangulation 𝒯 , and define

𝑉ℎ = {𝑢 ∈ 𝑉ℎ : 𝑢|Γ0}.

Then for 𝑉ℎ, the finite element approximation 𝑢ℎ exists and the discretisation is stable in the 𝐻1 norm.

Proof 4.54 [Proof taken from Brenner and Scott]. We have

‖𝑣‖𝐿2(Ω) ≤ ‖𝑣 − 𝑣‖𝐿2(Ω) + ‖𝑣‖𝐿2(Ω),

≤ 𝐶|𝑣|𝐻1(Ω) +
|Ω|1/2

|Γ0|

⃒⃒⃒⃒∫︁
Γ0

𝑣 𝑑𝑆

⃒⃒⃒⃒
,

= 𝐶|𝑣|𝐻1(Ω) +
|Ω|1/2

|Γ0|

⎛⎝⃒⃒⃒⃒⃒⃒∫︁
Γ0

𝑣 − 𝑣⏟ ⏞ 
=0

𝑑𝑆

⃒⃒⃒⃒
⃒⃒
⎞⎠ .

We have ⃒⃒⃒⃒∫︁
Γ0

(𝑣 − 𝑣) 𝑑𝑠

⃒⃒⃒⃒
=

⃒⃒⃒⃒∫︁
Γ0

1× (𝑣 − 𝑣) 𝑑𝑠

⃒⃒⃒⃒
≤ |Γ0|1/2‖𝑣 − 𝑣‖𝐿2(𝜕Ω),

≤ |Γ0|1/2𝐶|𝑣|𝐻1(Ω).

Combining, we get

‖𝑣‖𝐿2(Ω) ≤ 𝐶1|𝑣|𝐻1(Ω),

and hence coercivity,

‖𝑣‖2𝐻1(Ω) ≤ (1 + 𝐶2
1 )𝑏(𝑣, 𝑣).

The coercivity constant is independent of ℎ, so the approximation is stable.

Exercise 4.55 For 𝑓 ∈ 𝐿2(Ω), 𝜎 ∈ 𝐶1(Ω), find a finite element formulation of the problem

−
𝑛∑︁

𝑖=1

𝜕

𝜕𝑥𝑖

(︂
𝜎(𝑥)

𝜕𝑢

𝜕𝑥𝑖

)︂
= 𝑓,

𝜕𝑢

𝜕𝑛
= 0 on 𝜕Ω.

If there exist 0 < 𝑎 < 𝑏 such that 𝑎 < 𝜎(𝑥) < 𝑏 for all 𝑥 ∈ Ω, show continuity and coercive for your formulation
with respect to the 𝐻1 norm.

Exercise 4.56 Find a 𝐶0 finite element formulation for the Poisson equation

−∇2𝑢 = 𝑓, 𝑢 = 𝑔 on 𝜕Ω,

for a function 𝑔 which is 𝐶2 and whose restriction to 𝜕Ω is in 𝐿2(𝜕Ω). Derive conditions under the discretisation
has a unique solution.

In this section, We have developed some techniques for showing that variational problems arising from finite el-
ement discretisations for Helmholtz and Poisson problems have unique solutions, that are stable in the 𝐻1-norm.
This means that we can be confident that we can solve the problems on a computer and the solution won’t become
singular as the mesh is refined. Now we would like to go further and ask what is happening to the numerical
solutions as the mesh is refined. What are they converging to?

We will address these questions in the next section.
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CHAPTER

FIVE

CONVERGENCE OF FINITE ELEMENT APPROXIMATIONS

In this section we develop tools to prove convergence of finite element approximations to the exact solutions of
PDEs.

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

5.1 Weak derivatives

Consider a triangulation 𝒯 with recursively refined triangulations 𝒯ℎ and corresponding finite element spaces 𝑉ℎ.
Given stable finite element variational problems, we have a sequence of solutions 𝑢ℎ as ℎ → 0, satisfying the
ℎ-independent bound

‖𝑢ℎ‖𝐻1(Ω) ≤ 𝐶.

What are these solutions converging to? We need to find a Hilbert space that contains all 𝑉ℎ as ℎ→ 0, that extends
the 𝐻1 norm to the ℎ→ 0 limit of finite element functions.

Our first task is to define a derivative that works for all finite element functions, without reference to a mesh.
This requires some preliminary definitions, starting by considering some very smooth functions that vanish on the
boundaries together with their derivatives (so that we can integrate by parts as much as we like).

Definition 5.1 (Compact support on (Omega)) A function 𝑢 has compact support on Ω if there exists 𝜖 > 0 such
that 𝑢(𝑥) = 0 when min𝑦∈𝜕Ω |𝑥− 𝑦| < 𝜖.

Definition 5.2 ((C^infty_0(Omega))) We denote by𝐶∞
0 (Ω) the subset of𝐶∞(Ω) corresponding to functions that

have compact support on Ω.

Next we will define a space containing the generalised derivative.

Definition 5.3 ((L^1_{loc})) For triangles 𝐾 ⊂ int (Ω), we define

‖𝑢‖𝐿1(𝐾) =

∫︁
𝐾

|𝑢| 𝑑𝑥,

and

𝐿1
𝐾 =

{︀
𝑢 : ‖𝑢‖𝐿1(𝐾) <∞

}︀
.

Then

𝐿1
𝑙𝑜𝑐 =

{︀
𝑓 : 𝑓 ∈ 𝐿1(𝐾) ∀𝐾 ⊂ int (Ω)

}︀
.

Finally we are in a position to introduce the generalisation of the derivative itself.
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Definition 5.4 (Weak derivative) The weak derivative 𝐷𝛼
𝑤𝑓 ∈ 𝐿1

𝑙𝑜𝑐(Ω) of a function 𝑓 ∈ 𝐿1
𝑙𝑜𝑐(Ω) is defined by∫︁

Ω

𝜑𝐷𝛼
𝑤𝑓 𝑑𝑥 = (−1)|𝛼|

∫︁
Ω

𝐷𝛼𝜑𝑓 𝑑𝑥, ∀𝜑 ∈ 𝐶∞
0 (Ω).

Not that we do not see any boundary terms since 𝜑 vanishes at the boundary along with all derivatives.

Now we check that the derivative agrees with our finite element derivative definition.

Lemma 5.5 Let 𝑉 be a 𝐶0 finite element space. Then, for 𝑢 ∈ 𝑉 , the finite element derivative of u is equal to the
weak derivative of 𝑢.

Proof 5.6 Taking any 𝜑 ∈ 𝐶∞
0 (Ω), we have∫︁

Ω

𝜑
𝜕

𝜕𝑥𝑖
|𝐹𝐸𝑢 𝑑𝑥 =

∑︁
𝐾

∫︁
𝐾

𝜑
𝜕𝑢

𝜕𝑥𝑖
𝑑𝑥,

=
∑︁
𝐾

(︂
−
∫︁
𝐾

𝜕𝜑

𝜕𝑥𝑖
𝑢 𝑑𝑥+

∫︁
𝜕𝐾

𝜑𝑛𝑖𝑢 𝑑𝑆

)︂
,

= −
∑︁
𝐾

∫︁
𝐾

𝜕𝜑

𝜕𝑥𝑖
𝑢 𝑑𝑥 = −

∫︁
Ω

𝜕𝜑

𝜕𝑥𝑖
𝑢 𝑑𝑥,

as required.

Exercise 5.7 Let 𝑉 be a 𝐶1 finite element space. For 𝑢 ∈ 𝑉 , show that the finite second derivatives of u is equal
to the weak second derivative of 𝑢.

Exercise 5.8 Let 𝑉 be a discontinuous finite element space. For 𝑢 ∈ 𝑉 , show that the weak derivative does not
coincide with the finite element derivative in general (find a counter-example).

Lemma 5.9 For 𝑢 ∈ 𝐶 |𝛼|(Ω), the usual “strong” derivative 𝐷𝛼 of u is equal to the weak derivative 𝐷𝛼
𝑤 of 𝑢.

Exercise 5.10 Prove this lemma.

Due to these equivalences, we do not need to distinguish between strong, weak and finite element first derivatives
for 𝐶0 finite element functions. All derivatives are assumed to be weak from now on.

5.2 Sobolev spaces

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

We are now in a position to define a space that contains all 𝐶0 finite element spaces. This means that we can
consider the limit of finite element approximations as ℎ→ 0.

Definition 5.11 (The Sobolev space (H^1)) 𝐻1(Ω) is the function space defined by

𝐻1(Ω) =
{︀
𝑢 ∈ 𝐿1

𝑙𝑜𝑐 : ‖𝑢‖𝐻1(Ω) <∞
}︀
.

Going further, the Sobolev space 𝐻𝑘 is the space of all functions with finite 𝐻𝑘 norm.

Definition 5.12 (The Sobolev space (H^k)) 𝐻𝑘(Ω) is the function space defined by

𝐻𝑘(Ω) =
{︀
𝑢 ∈ 𝐿1

𝑙𝑜𝑐 : ‖𝑢‖𝐻𝑘(Ω) <∞
}︀

Since ‖𝑢‖𝐻𝑘(Ω) ≤ ‖𝑢‖𝐻𝑙(Ω) for 𝑘 < 𝑙, we have 𝐻 𝑙 ⊂ 𝐻𝑘 for 𝑘 < 𝑙.

If we are to consider limits of finite element functions in these Sobolev spaces, then it is important that they are
closed, i.e. limits remain in the spaces.
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Lemma 5.13 ((H^k) spaces are Hilbert spaces) The space 𝐻𝑘(Ω) is closed.

Let {𝑢𝑖} be a Cauchy sequence in 𝐻𝑘. Then {𝐷𝛼𝑢𝑖} is a Cauchy sequence in 𝐿2(Ω) (which is closed), so ∃𝑣𝛼 ∈
𝐿2(Ω) such that 𝐷𝛼𝑢𝑖 → 𝑣𝛼 for |𝛼| ≤ 𝑘. If 𝑤𝑗 → 𝑤 in 𝐿2(Ω), then for 𝜑 ∈ 𝐶∞

0 (Ω),∫︁
Ω

(𝑤𝑗 − 𝑤)𝜑𝑑𝑥 ≤ ‖𝑤𝑗 − 𝑤‖𝐿2(Ω)‖𝜑‖𝐿∞ → 0.

We use this equation to get ∫︁
Ω

𝑣𝛼𝜑𝑑𝑥 = lim
𝑖→∞

∫︁
Ω

𝜑𝐷𝛼𝑢𝑖 𝑑𝑥,

= lim
𝑖→∞

(−1)|𝛼|
∫︁
Ω

𝑢𝑖𝐷
𝛼𝜑𝑑𝑥,

= (−1)|𝛼|
∫︁
Ω

𝑣𝐷𝛼𝜑𝑑𝑥,

i.e. 𝑣𝛼 is the weak derivative of 𝑢 as required.

We quote the following much deeper results without proof.

Theorem 5.14 ((H=W)) Let Ω be any open set. Then 𝐻𝑘(Ω) ∩ 𝐶∞(Ω) is dense in 𝐻𝑘(Ω).

The interpretation is that for any function 𝑢 ∈ 𝐻𝑘(Ω), we can find a sequence of 𝐶∞ functions 𝑢𝑖 converging to
𝑢. This is very useful as we can compute many things using 𝐶∞ functions and take the limit.

Theorem 5.15 (Sobolev’s inequality) Let Ω be an 𝑛-dimensional domain with Lipschitz boundary, let 𝑘 be an
integer with 𝑘 > 𝑛/2. Then there exists a constant 𝐶 such that

‖𝑢‖𝐿∞(Ω) = ess sup
𝑥∈Ω

|𝑢(𝑥)| ≤ 𝐶‖𝑢‖𝐻𝑘(Ω).

Further, there is a 𝐶0 continuous function in the 𝐿∞(Ω) equivalence class of 𝑢.

Previously we saw this result for continuous functions. Here it is presented for𝐻𝑘 functions, with an extra statement
about the existence of a 𝐶0 function in the equivalence class. The interpretation is that if 𝑢 ∈ 𝐻𝑘 then there is a
continuous function 𝑢0 such that the set of points where 𝑢 ̸= 𝑢0 has zero area/volume.

Corollary 5.16 (Sobolev’s inequality for derivatives) Let Ω be a 𝑛-dimensional domain with Lipschitz bound-
ary, let 𝑘 be an integer with 𝑘 −𝑚 > 𝑛/2. Then there exists a constant 𝐶 such that

‖𝑢‖𝑊𝑚
∞(Ω) :=

∑︁
|𝛼|≤𝑚

‖𝐷𝛼𝑢‖𝐿∞(Ω) ≤ 𝐶‖𝑢‖𝐻𝑘(Ω).

Further, there is a 𝐶𝑚 continuous function in the 𝐿∞(Ω) equivalence class of 𝑢.

Proof 5.17 Just apply Sobolev’s inequality to the 𝑚 derivatives of 𝑢.

5.3 Variational formulations of PDEs

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

We can now consider linear variational problems defined on𝐻𝑘 spaces, by taking a bilinear form 𝑏(𝑢, 𝑣) and linear
form 𝐹 (𝑣), seeking 𝑢 ∈ 𝐻𝑘 (for chosen 𝐻𝑘) such that

𝑏(𝑢, 𝑣) = 𝐹 (𝑣), ∀𝑣 ∈ 𝐻𝑘.

Since 𝐻𝑘 is a Hilbert space, the Lax-Milgram theorem can be used to analyse, the existence of a unique solution
to an 𝐻𝑘 linear variational problem.

For example, the Helmholtz problem solvability is immediate.
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Theorem 5.18 (Well-posedness for (modified) Helmholtz)) The Helmholtz variational problem on 𝐻1 satisfies
the conditions of the Lax-Milgram theorem.

Proof 5.19 The proof for 𝐶0 finite element spaces extends immediately to 𝐻1.

Next, we develop the relationship between solutions of the Helmholtz variational problem and the strong-form
Helmholtz equation,

𝑢−∇2𝑢 = 𝑓,
𝜕𝑢

𝜕𝑛
= 0, on 𝜕Ω.

The basic idea is to check that when you take a solution of the Helmholtz variational problem and integrate by parts
(provided that this makes sense) then you reveal that the solution solves the strong form equation. Functions in𝐻𝑘

make boundary values hard to interpret since they are not guaranteed to have defined values on the boundary. We
make the following definition.

Definition 5.20 (Trace of (H^1) functions) Let 𝑢 ∈ 𝐻1(Ω) and choose 𝑢𝑖 ∈ 𝐶∞(Ω) such that 𝑢𝑖 → 𝑢. We
define the trace 𝑢|𝜕Ω on 𝜕Ω as the limit of the restriction of 𝑢𝑖 to 𝜕Ω. This definition is unique from the uniqueness
of limits.

We can extend our trace inequality for finite element functions directly to 𝐻1 functions.

Lemma 5.21 (Trace theorem for (H^1) functions) Let 𝑢 ∈ 𝐻1(Ω) for a polygonal domain Ω. Then the trace
𝑢|𝜕Ω satisfies

‖𝑢‖𝐿2(𝜕Ω) ≤ 𝐶‖𝑢‖𝐻1(Ω).

The interpretation of this result is that if 𝑢 ∈ 𝐻1(Ω) then 𝑢|𝜕Ω ∈ 𝐿2(𝜕Ω).

Proof 5.22 Adapt the proof for 𝐶0 finite element functions, choosing 𝑢 ∈ 𝐶∞(Ω), and pass to the limit in𝐻1(Ω).

This tells us when the integration by parts formula makes sense.

Lemma 5.23 Let 𝑢 ∈ 𝐻2(Ω), 𝑣 ∈ 𝐻1(Ω). Then∫︁
Ω

(−∇2𝑢)𝑣 𝑑𝑥 =

∫︁
Ω

∇𝑢 · ∇𝑣 𝑑𝑥−
∫︁
𝜕Ω

𝜕𝑢

𝜕𝑛
𝑣 𝑑𝑆.

Proof 5.24 First note that 𝑢 ∈ 𝐻2(Ω) =⇒ ∇𝑢 ∈ (𝐻1(Ω))𝑑. Then

Then, take 𝑣𝑖 ∈ 𝐶∞(Ω) and 𝑢𝑖 ∈ 𝐶∞(Ω) converging to 𝑣 and 𝑢, respectively, and 𝑣𝑖∇𝑢𝑖 ∈ 𝐶∞(Ω) converges to
𝑣∇𝑢. These satisfy the equation; we obtain the result by passing to the limit.

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

Now we have everything we need to show that solutions of the strong form equation also solve the variational
problem. It is just a matter of substituting into the formula and applying integration by parts.

Lemma 5.25 For 𝑓 ∈ 𝐿2, let 𝑢 ∈ 𝐻2(Ω) solve

𝑢−∇2𝑢 = 𝑓,
𝜕𝑢

𝜕𝑛
= 0 on 𝜕Ω,

in the 𝐿2 sense, i.e. ‖𝑢−∇2𝑢− 𝑓‖𝐿2 = 0. Then 𝑢 solves the variational form of the Helmholtz equation.

Proof 5.26 𝑢 ∈ 𝐻2 =⇒ ‖𝑢‖𝐻2 < ∞ =⇒ ‖𝑢‖𝐻1 < ∞ =⇒ 𝑢 ∈ 𝐻1. Multiplying by test function 𝑣 ∈ 𝐻1,
and using the previous proposition gives∫︁

Ω

𝑢𝑣 +∇𝑢 · ∇𝑣 𝑑𝑥 =

∫︁
Ω

𝑓𝑣 𝑑𝑥, ∀𝑣 ∈ 𝐻1(Ω),

as required.

Now we go the other way, showing that solutions of the variational problem also solve the strong form equation.
To do this, we need to assume a bit more smoothness of the solution, that it is in 𝐻2 instead of just 𝐻1.
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Theorem 5.27 Let 𝑓 ∈ 𝐿2(Ω) and suppose that 𝑢 ∈ 𝐻2(Ω) solves the variational Helmholtz equation on a
polygonal domain Ω. Then 𝑢 solves the strong form Helmholtz equation with zero Neumann boundary conditions.

Proof 5.28 Using integration by parts for 𝑢 ∈ 𝐻2, 𝑣 ∈ 𝐶∞
0 (Ω) ∈ 𝐻1, we have∫︁

Ω

(𝑢−∇2𝑢− 𝑓)𝑣 𝑑𝑥 =

∫︁
Ω

𝑢𝑣 +∇𝑢 · ∇𝑣 − 𝑣𝑓 𝑑𝑥 = 0.

It is a standard result that 𝐶∞
0 (Ω) is dense in 𝐿2(Ω) (i.e., every 𝐿2 function can be approximated arbitrarily

closely by a 𝐶∞
0 function), and therefore we can choose a sequence of v converging to 𝑢−∇2𝑢− 𝑓 and we obtain

‖𝑢−∇2𝑢− 𝑓‖𝐿2(Ω) = 0.

Now we focus on showing the boundary condition is satisfied. We have

0 =

∫︁
Ω

𝑢𝑣 +∇𝑢 · ∇𝑣 − 𝑓𝑣 𝑑𝑥

=

∫︁
Ω

𝑢𝑣 +∇𝑢 · ∇𝑣 − (𝑢−∇2𝑢)𝑣 𝑑𝑥

=

∫︁
𝜕Ω

𝜕𝑢

𝜕𝑛
𝑣 𝑑𝑆.

We can find arbitrary 𝑣 ∈ 𝐿2(𝜕Ω), hence ‖ 𝜕𝑢
𝜕𝑛‖𝐿2(𝜕Ω) = 0.

5.4 Galerkin approximations of linear variational problems

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

Going a bit more general again, assume that we have a well-posed linear variational problem on𝐻𝑘, connected to a
strong form PDE. Now we would like to approximate it. This is done in general using the Galerkin approximation.

Definition 5.29 (Galerkin approximation) Consider a linear variational problem of the form:

find 𝑢 ∈ 𝐻𝑘 such that

𝑏(𝑢, 𝑣) = 𝐹 (𝑣), ∀𝑣 ∈ 𝐻𝑘.

For a finite element space 𝑉ℎ ⊂ 𝑉 = 𝐻𝑘(Ω), the Galerkin approximation of this𝐻𝑘 variational problem seeks to
find 𝑢ℎ ∈ 𝑉ℎ such that

𝑏(𝑢ℎ, 𝑣) = 𝐹 (𝑣), ∀𝑣 ∈ 𝑉ℎ.

We just restrict the trial function 𝑢 and the test function 𝑣 to the finite element space. 𝐶0 finite element spaces are
subspaces of 𝐻1, 𝐶1 finite element spaces are subspaces of 𝐻2 and so on.

If 𝑏(𝑢, 𝑣) is continuous and coercive on𝐻𝑘, then it is also continuous and coercive on 𝑉ℎ by the subspace property.
Hence, we know that the Galerkin approximation exists, is unique and is stable. This means that it will be possible
to solve the matrix-vector equation.

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

Moving on, if we can solve the equation, we would like to know if it is useful. What is the size of the error 𝑢−𝑢ℎ?
For Galerkin approximations this question is addressed by Céa’s lemma.
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Theorem 5.30 (Céa’s lemma.) Let 𝑉ℎ ⊂ 𝑉 , and let 𝑢 solve a linear variational problem on 𝑉 , whilst 𝑢ℎ solves
the equivalent Galerkin approximation on 𝑉ℎ. Then

‖𝑢− 𝑢ℎ‖𝑉 ≤ 𝑀

𝛾
min
𝑣∈𝑉ℎ

‖𝑢− 𝑣‖𝑉 ,

where 𝑀 and 𝛾 are the continuity and coercivity constants of 𝑏(𝑢, 𝑣), respectively.

Proof 5.31 We have

𝑏(𝑢, 𝑣) = 𝐹 (𝑣) ∀𝑣 ∈ 𝑉, 𝑏(𝑢ℎ, 𝑣) = 𝐹 (𝑣) ∀𝑣 ∈ 𝑉ℎ.

Choosing 𝑣 ∈ 𝑉ℎ ⊂ 𝑉 means we can use it in both equations, and subtraction and linearity lead to the “Galerkin
orthogonality” condition

𝑏(𝑢− 𝑢ℎ, 𝑣) = 0, ∀𝑣 ∈ 𝑉ℎ.

Then, for all 𝑣 ∈ 𝑉ℎ,

𝛾‖𝑢− 𝑢ℎ‖2𝑉 ≤ 𝑏(𝑢− 𝑢ℎ, 𝑢− 𝑢ℎ),

= 𝑏(𝑢− 𝑢ℎ, 𝑢− 𝑣) + 𝑏(𝑢− 𝑢ℎ, 𝑣 − 𝑢ℎ)⏟  ⏞  
=0

,

≤𝑀‖𝑢− 𝑢ℎ‖𝑉 ‖𝑢− 𝑣‖𝑉 .

So,

𝛾‖𝑢− 𝑢ℎ‖𝑉 ≤𝑀‖𝑢− 𝑣‖𝑉 .

Minimising over all 𝑣 completes the proof.

5.5 Interpolation error in 𝐻𝑘 spaces

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

The interpretation of Céa’s lemma is that the error is proportional to the minimal error in approximating 𝑢 in 𝑉ℎ.
To do this, we can simply choose 𝑣 = ℐℎ𝑢 in Céa’s lemma, to get

‖𝑢− 𝑢ℎ‖𝑉 ≤ 𝑀

𝛾
min
𝑣∈𝑉ℎ

‖𝑢− 𝑣‖𝑉 ≤ 𝑀

𝛾
‖𝑢− ℐℎ𝑢‖𝑉 .

Hence, Céa’s lemma reduces the problem of estimating the error in the numerical solution to estimating error in
the interpolation of the exact solution. We have already examined this in the section on interpolation operators,
but in the context of continuous functions. The problem is that we do not know that the solution 𝑢 is continuous,
only that it is in 𝐻𝑘 for some 𝑘.

We now quickly revisit the results of the interpolation section to extend them to 𝐻𝑘 spaces. The proofs are mostly
identical, so we just give the updated result statements and state how to modify the proofs.

Firstly we recall the averaged Taylor polynomial. Since it involves only integrals of the derivatives, we can imme-
diately use weak derivatives here.

Definition 5.32 (Averaged Taylor polynomial with weak derivatives) Let Ω ⊂ R𝑛 be a domain with diameter
𝑑, that is star-shaped with respect to a ball 𝐵 with radius 𝜖, contained within Ω. For 𝑓 ∈ 𝐻𝑘+1(Ω) the averaged
Taylor polynomial 𝑄𝑘,𝐵𝑓 ∈ 𝒫𝑘 is defined as

𝑄𝑘,𝐵𝑓(𝑥) =
1

|𝐵|

∫︁
𝐵

𝑇 𝑘𝑓(𝑦, 𝑥) 𝑑𝑦,

where 𝑇 𝑘𝑓 is the Taylor polynomial of degree 𝑘 of 𝑓 ,

𝑇 𝑘𝑓(𝑦, 𝑥) =
∑︁
|𝛼|≤𝑘

𝐷𝛼𝑓(𝑦)
(𝑥− 𝑦)𝛼

𝛼!
,

evaluated using weak derivatives.
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This definition makes sense since the Taylor polynomial coefficients are in 𝐿1
𝑙𝑜𝑐(Ω) and thus their integrals over 𝐵

are defined.

The next step was to examine the error in the Taylor polynomial.

Theorem 5.33 Let Ω ⊂ R𝑛 be a domain with diameter 𝑑, that is star-shaped with respect to a ball 𝐵 with radius
𝜖, contained within Ω. There exists a constant 𝐶(𝑘, 𝑛) such that for 0 ≤ |𝛽| ≤ 𝑘 + 1 and all 𝑓 ∈ 𝐻𝑘+1(Ω),

‖𝐷𝛽(𝑓 −𝑄𝑘,𝐵𝑓)‖𝐿2 ≤ 𝐶
|Ω|1/2

|𝐵|1/2
𝑑𝑘+1−|𝛽|‖∇𝑘+1𝑓‖𝐿2(Ω).

Proof 5.34 To show this, we assume that 𝑓 ∈ 𝐶∞(Ω), in which case the result of Theorem 3.17 applies. Then we
obtain the present result by approximating 𝑓 by a sequence of 𝐶∞(Ω) functions and passing to the limit.

We then repeat the following corollary.

Corollary 5.35 Let 𝐾1 be a triangle with diameter 1. There exists a constant 𝐶(𝑘, 𝑛) such that

‖𝑓 −𝑄𝑘,𝐵𝑓‖𝐻𝑘(𝐾1) ≤ 𝐶|∇𝑘+1𝑓 |𝐻𝑘+1(𝐾1).

Proof 5.36 Same as Lemma 3.19.

The next step was the bound on the interpolation operator. Now we just have to replace𝐶𝑙,∞ with𝑊 𝑙
∞ as derivatives

may not exist at every point.

Lemma 5.37 Let (𝐾1,𝒫,𝒩 ) be a finite element such that 𝐾1 is a triangle with diameter 1, and such that the
nodal variables in 𝒩 involve only evaluations of functions or evaluations of derivatives of degree ≤ 𝑙, and
‖𝑁𝑖‖𝑊 𝑙

∞(𝐾1)′ <∞,

‖𝑁𝑖‖𝑊 𝑙
∞(𝐾1)′ = sup

‖𝑢‖
𝑊𝑙

∞(𝐾1)
>0

|𝑁𝑖(𝑢)|
‖𝑢‖𝑊 𝑙

∞(𝐾1)

.

Let 𝑢 ∈ 𝐻𝑘(𝐾1) with 𝑘 > 𝑙 + 𝑛/2. Then

‖ℐ𝐾1
𝑢‖𝐻𝑘(𝐾1) ≤ 𝐶‖𝑢‖𝐻𝑘(𝐾1).

Proof 5.38 Same as Lemma 3.26. replacing 𝐶𝑙,∞ with 𝑊 𝑙
∞, and using the full version of the Sobolev inequality

in Lemma 5.15.

The next steps then just follow through.

Lemma 5.39 Let (𝐾1,𝒫,𝒩 ) be a finite element such that𝐾1 has diameter 1, and such that the nodal variables in
𝒩 involve only evaluations of functions or evaluations of derivatives of degree ≤ 𝑙, and 𝒫 contain all polynomials
of degree 𝑘 and below, with 𝑘 > 𝑙 + 𝑛/2. Let 𝑢 ∈ 𝐻𝑘+1(𝐾1). Then for 𝑖 ≤ 𝑘, the local interpolation operator
satisfies

|ℐ𝐾1𝑢− 𝑢|𝐻𝑖(𝐾1) ≤ 𝐶1|𝑢|𝐻𝑘+1(𝐾1).

Proof 5.40 Same as Lemma 3.28.

Lemma 5.41 Let (𝐾,𝒫,𝒩 ) be a finite element such that 𝐾 has diameter 𝑑, and such that the nodal variables in
𝒩 involve only evaluations of functions or evaluations of derivatives of degree ≤ 𝑙, and 𝒫 contains all polynomials
of degree 𝑘 and below, with 𝑘 > 𝑙 + 𝑛/2. Let 𝑢 ∈ 𝐻𝑘+1(𝐾). Then for 𝑖 ≤ 𝑘, the local interpolation operator
satisfies

|ℐ𝐾𝑢− 𝑢|𝐻𝑖(𝐾) ≤ 𝐶𝐾𝑑
𝑘+1−𝑖|𝑢|𝐻𝑘+1(𝐾).

where 𝐶𝐾 is a constant that depends on the shape of 𝐾 but not the diameter.

Proof 5.42 Repeat the scaling argument of Lemma 3.30.

Theorem 5.43 Let 𝒯 be a triangulation with finite elements (𝐾𝑖,𝒫𝑖,𝒩𝑖), such that the minimum aspect ratio 𝑟
of the triangles 𝐾𝑖 satisfies 𝑟 > 0, and such that the nodal variables in 𝒩 involve only evaluations of functions or
evaluations of derivatives of degree ≤ 𝑙, and 𝒫 contains all polynomials of degree 𝑘 and below, with 𝑘 > 𝑙+𝑛/2.
Let 𝑢 ∈ 𝐻𝑘+1(Ω). Let ℎ be the maximum over all of the triangle diameters, with 0 ≤ ℎ < 1. Let 𝑉 be the
corresponding 𝐶𝑟 finite element space. Then for 𝑖 ≤ 𝑘 and 𝑖 ≤ 𝑟 + 1, the global interpolation operator satisfies

‖ℐℎ𝑢− 𝑢‖𝐻𝑖(Ω) ≤ 𝐶ℎ𝑘+1−𝑖|𝑢|𝐻𝑘+1(Ω).

Proof 5.44 Identical to Theorem 3.32.
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5.6 Convergence of the finite element approximation to the
Helmholtz problem

A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

Now that we have the required interpolation operator results, we can return to applying Céa’s lemma to the conver-
gence of the finite element approximation to the Helmholtz problem.

Corollary 5.45 The degree 𝑘 Lagrange finite element approximation 𝑢ℎ to the solution 𝑢 of the variational
Helmholtz problem satisfies

‖𝑢ℎ − 𝑢‖𝐻1(Ω) ≤ 𝐶ℎ𝑘‖𝑢‖𝐻𝑘+1(Ω).

Proof 5.46 We combine Céa’s lemma with the previous estimate, since
min
𝑣∈𝑉ℎ

‖𝑢− 𝑣‖𝐻1(Ω) ≤ ‖𝑢− ℐℎ𝑢‖𝐻1(Ω) ≤ 𝐶ℎ𝑘‖𝑢‖𝐻𝑘+1(Ω),

having chosen 𝑖 = 1.

Exercise 5.47 Consider the variational problem of finding 𝑢 ∈ 𝐻1([0, 1]) such that∫︁ 1

0

𝑣𝑢+ 𝑣′𝑢′ 𝑑𝑥 =

∫︁ 1

0

𝑣𝑥 𝑑𝑥+ 𝑣(1)− 𝑣(0), ∀𝑣 ∈ 𝐻1([0, 1]).

After dividing the interval [0, 1] into 𝑁 equispaced cells and forming a 𝑃1 𝐶0 finite element space 𝑉𝑁 , the error
‖𝑢− 𝑢ℎ‖𝐻1 = 0 for any 𝑁 > 0.

Explain why this is expected.

Exercise 5.48 Let 𝐻1([0, 1]) be the subspace of 𝐻1([0, 1]) such that 𝑢(0) = 0. Consider the variational problem
of finding 𝑢 ∈ 𝐻1([0, 1]) with ∫︁ 1

0

𝑣′𝑢′ 𝑑𝑥 =

∫︁ 1/2

0

𝑣 𝑑𝑥, ∀𝑣 ∈ 𝐻([0, 1]).

The interval [0, 1] is divided into 2𝑁 + 1 equispaced cells (where 𝑁 is a positive integer). After forming a 𝑃2 𝐶0

finite element space 𝑉𝑁 , the error ‖𝑢− 𝑢ℎ‖𝐻1 only converges at a linear rate. Explain why this is expected.

Exercise 5.49 Let Ω be a convex polygonal 2D domain. Consider the
following two problems.

1. Find 𝑢 ∈ 𝐻2 such that

‖∇2𝑢+ 𝑓‖𝐿2(Ω) = 0, ‖𝑢‖𝐿2(𝜕Ω) = 0,

which we write in a shorthand as

−∇2𝑢 = 𝑓, 𝑢|𝜕Ω = 0.

2. Find 𝑢 ∈ 𝐻1(Ω) such that ∫︁
Ω

∇𝑢 · ∇𝑣 𝑑𝑥 =

∫︁
Ω

𝑓𝑣 𝑑𝑥, ∀𝑣 ∈ 𝐻1(Ω),

where 𝐻1(Ω) is the subspace of 𝐻1(Ω) consisting of functions whose trace vanishes on the boundary.

Under assumptions on 𝑢 which you should state, show that a solution to problem (1.) is a solution to problem (2.).

Let ℎ be the maximum triangle diameter of a triangulation 𝑇ℎ ofΩ, with 𝑉ℎ the corresponding linear Lagrange finite
element space. Construct a finite element approximation to Problem (2.) above. Briefly give the main arguments
as to why the 𝐻1(Ω) norm of the error converges to zero linearly in ℎ as ℎ→ 0, giving your assumptions.

Céa’s lemma gives us error estimates in the norm of the space where the variational problem is defined, where
the continuity and coercivity results hold. In the case of the Helmholtz problem, this is 𝐻1. We would also like
estimates of the error in the 𝐿2 norm, and it will turn out that these will have a more rapid convergence rate as
ℎ→ 0.
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A video recording of the following material is available here.

Imperial students can also watch this video on Panopto

To do this we quote the following without proof.

Theorem 5.50 (Elliptic regularity) Let 𝑤 solve the equation

𝑤 −∇2𝑤 = 𝑓,
𝜕𝑤

𝜕𝑛
= 0 on 𝜕Ω,

on a convex (results also hold for other types of “nice” domains) domain Ω, with 𝑓 ∈ 𝐿2. Then there exists
constant 𝐶 > 0 such that

|𝑤|𝐻2(Ω) ≤ 𝐶‖𝑓‖𝐿2(Ω).

Similar results hold for general elliptic operators, such as Poisson’s equation with the types of boundary conditions
discussed above. Elliptic regularity is great to have, because it says that the solution of the𝐻1 variational problem
is actually in 𝐻2, provided that 𝑓 ∈ 𝐿2.

We now use this to obtain the following result, using the Aubin-Nitsche trick.

Theorem 5.51 The degree 𝑘 Lagrange finite element approximation 𝑢ℎ to the solution 𝑢 of the variational
Helmholtz problem satisfies

‖𝑢ℎ − 𝑢‖𝐿2(Ω) ≤ 𝐶ℎ𝑘+1‖𝑢‖𝐻𝑘+1(Ω).

Proof 5.52 We use the Aubin-Nitsche duality argument. Let 𝑤 be the solution of

𝑤 −∇2𝑤 = 𝑢− 𝑢ℎ,

with the same Neumann boundary conditions as for 𝑢.

Since 𝑢− 𝑢ℎ ∈ 𝐻1(Ω) ⊂ 𝐿2(Ω), we have 𝑤 ∈ 𝐻2(Ω) by elliptic regularity.

Then we have (by multiplying by a test function an integrating by parts),

𝑏(𝑤, 𝑣) = (𝑢− 𝑢ℎ, 𝑣)𝐿2(Ω), ∀𝑣 ∈ 𝐻1(Ω),

and so

‖𝑢− 𝑢ℎ‖2𝐿2(Ω) = (𝑢− 𝑢ℎ, 𝑢− 𝑢ℎ) = 𝑏(𝑤, 𝑢− 𝑢ℎ),= 𝑏(𝑤 − ℐℎ𝑤, 𝑢− 𝑢ℎ) (orthogonality) ,

≤ 𝐶‖𝑢− 𝑢ℎ‖𝐻1(Ω)‖𝑤 − ℐℎ𝑤‖𝐻1(Ω),

≤ 𝐶ℎ‖𝑢− 𝑢ℎ‖𝐻1(Ω)|𝑤|𝐻2(Ω)

≤ 𝐶1ℎ
𝑘+1|𝑢|𝐻𝑘+1(Ω)‖𝑢−𝑢ℎ‖𝐿2(Ω)

and dividing both sides by ‖𝑢− 𝑢ℎ‖𝐿2(Ω) gives the result.

Thus we gain one order of convergence rate with ℎ by using the 𝐿2 norm instead of the 𝐻1 norm.

5.7 Epilogue

This completes our analysis of the convergence of the Galerkin finite element approximation to the Helmholtz
problem. Similar approaches can be applied to analysis of other elliptic PDEs, using the following programme.

1. Find a variational formulation of the PDE with a bilinear form that is continuous and coercive (and hence
well-posed by Lax-Milgram) on 𝐻𝑘 for some 𝑘.

2. Find a finite element space 𝑉ℎ ⊂ 𝐻𝑘. For 𝐻1, this requires a 𝐶0 finite element space, and for 𝐻2, a 𝐶1

finite element space is required.
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3. The Galerkin approximation to the variational formulation is obtained by restricting the solution and test
functions to 𝑉ℎ.

4. Continuity and coercivity (and hence well-posedness) for the Galerkin approximation is assured since 𝑉ℎ ⊂
𝐻𝑘. This means that the Galerkin approximation is solvable and stable.

5. The estimate of the error estimate in terms of ℎ comes from Céa’s lemma plus the error estimate for the nodal
interpolation operator.

This course only describes the beginning of the subject of finite element methods, for which research continues to
grow in both theory and application. There are many methods and approaches that go beyond the basic Galerkin
approach described above. These include

• Discontinuous Galerkin methods, which use discontinuous finite element spaces with jump conditions be-
tween cells to compensate for not having the required continuity. These problems do not fit into the standard
Galerkin framework and new techniques have been developed to derive and analyse them.

• Mixed finite element methods, which consider systems of partial differential equations such as the Poisson
equation in first-order form,

𝑢−∇𝑝 = 0, ∇ · 𝑢 = 𝑓.

The variational forms corresponding to these systems are not coercive, but they are well-posed anyway, and
additional techniques have been developed.

• Non-conforming methods, which work even though 𝑉ℎ ̸⊂ 𝐻𝑘. For example, the Crouzeix-Raviart element
uses linear functions that are only continuous at edge centres, so the functions are not in𝐶0 and the functions
do not have a weak derivative. However, using the finite element derivative in the weak form for 𝐻1 elliptic
problems still gives a solvable system that converges at the optimal rate. Additional techniques have been
developed to analyse this.

• Interior penalty methods, which work even though 𝑉ℎ ̸⊂ 𝐻𝑘. These methods are used to solve 𝐻𝑘 elliptic
problems using 𝐻 𝑙 finite element spaces with 𝑙 < 𝑘, using jump conditions to obtain a stable discretisation.
Additional techniques have been developed to analyse this.

• Stabilised and multiscale methods for finite element approximation of PDEs whose solutions have a wide
range of scales, for example they might have boundary layers, turbulent structures or other phenomena.
Resolving this features is often too expensive, so the goal is to find robust methods that behave well when
the solution is not well resolved. Additional techniques have been developed to analyse this.

• Hybridisable methods that involve flux functions that are supported only on cell facets.

• Currently there is a lot of activity around discontinuous Petrov-Galerkin methods, which select optimal test
functions to maximise the stability of the discrete operator. This means that they can be applied to problems
such as wave propagation which are otherwise very challenging to find stable methods for. Also, these
methods come with a bespoke error estimator that can allow for adaptive meshing starting from very coarse
meshes. Another new and active area is virtual element methods, where the basis functions are not explicitly
defined everywhere (perhaps just on the boundary of cells). This facilitates the use of arbitrary polyhedra as
cells, leading to very flexible mesh choices.

All of these methods are driven by the requirements of different physical applications.

Other rich areas of finite element research include

• the development of bespoke, efficient iterative solver algorithms on parallel computers for finite element
discretisations of PDEs. Here, knowledge of the analysis of the discretisation can lead to solvers that converge
in a number of iterations that is independent of the mesh parameter ℎ.

• adaptive mesh algorithms that use analytical techniques to estimate or bound the numerical error after the
numerical solution has been computed, in order to guide iterative mesh refinement in particular areas of the
domain.
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CHAPTER

SIX

STOKES EQUATION

ò Note

This section is the mastery topic for this module. It consists of some extra material that is not covered in lectures
which will be covered in the mastery question on the exam.

This section is not a part of the third year version of this module.

6.1 Strong form of the equations

In this section we consider finite element discretisations of the Stokes equation of a viscous fluid, given by

−2𝜇∇ · 𝜖(𝑢) +∇𝑝 = 𝑓, ∇ · 𝑢 = 0, 𝜖(𝑢) =
1

2

(︀
∇𝑢+∇𝑢𝑇

)︀
, (6.1)

where 𝑢 is the (vector-valued) fluid velocity, 𝑝 is the pressure, 𝜇 is the viscosity and 𝑓 is a (vector-valued) external
force applied to the fluid. This model gives the motion of a fluid in the high viscosity limit and has applications
in industrial, geological and biological flows. For less viscous fluids we use the Navier-Stokes equation which
consists of the Stokes equations plus additional nonlinear terms. To understand discretisations of the Navier-
Stokes equations it is necessary to first understand discretisations of the Stokes equation. There are several relevant
boundary conditions for the Stokes equation, but for now we shall consider the “no slip” boundary condition 𝑢 = 0
on the entire boundary 𝜕Ω. Note that ∇𝑢 is a 2-tensor (i.e. a matrix-valued function), with

(∇𝑢)𝑖𝑗 =
𝜕𝑢𝑖
𝜕𝑥𝑗

, (∇𝑢𝑇 )𝑖𝑗 = (∇𝑢)𝑗𝑖. (6.2)

Note that under the incompressibility constraint ∇ · 𝑢 = 0, we can write ∇ · 𝜖(𝑢) = ∇2𝑢. However, this leads to
various issues in the finite element discretisation, and makes it harder to apply stress-free boundary conditions.

Under no slip boundary conditions, the pressure 𝑝 only appears in Stokes equation inside a gradient, hence we can
only expect to solve these equations for 𝑝 up to an additive constant. To fix that constant, with no slip boundary
conditions we additionally require ∫︁

Ω

𝑝𝑑 𝑥 = 0. (6.3)

6.2 Variational form of the equations

To proceed to the finite element discretisation, we need to find an appropriate variational formulation of the Stokes
equations. Defining 𝑉 = (𝐻1(Ω))𝑛 (i.e. vector valued functions in physical dimension 𝑛 with each Cartesian
component in 𝐻1(Ω), which is the subspace of 𝐻1(Ω) consisting of functions that vanish on the boundary, and
𝑄 = �̊�2(Ω), with

�̊�2(Ω) =

{︂
𝑝 ∈ 𝐿2(Ω) :

∫︁
Ω

𝑝 = 0

}︂
. (6.4)
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Definition 6.1 The variational formulation of the Stokes equation seeks (𝑢, 𝑝) ∈ 𝑉 ×𝑄 such that

𝑎(𝑢, 𝑣) + 𝑏(𝑣, 𝑝) =

∫︁
Ω

𝑓 · 𝑣𝑑 𝑥,

𝑏(𝑢, 𝑞) = 0, ∀(𝑣, 𝑞) ∈ 𝑉 ×𝑄,

(6.5)

where

𝑎(𝑢, 𝑣) = 2𝜇

∫︁
Ω

𝜖(𝑢) : 𝜖(𝑣)𝑑 𝑥,

𝑏(𝑣, 𝑞) = −
∫︁
Ω

𝑞∇ · 𝑣𝑑 𝑥.
(6.6)

Exercise 6.2 Show that if (𝑢, 𝑝) solve the variational formulation of the Stokes equations, and further that 𝑢 ∈
𝐻2(Ω), 𝑝 ∈ 𝐻1(Ω), then (𝑢, 𝑝) solves the strong form of the Stokes equations.

We call this type of problem a “mixed problem” defined on a “mixed function space” 𝑉 × 𝑄, since we solve
simultaneously for 𝑢 ∈ 𝑉 and 𝑝 ∈ 𝑄. If we define 𝑋 = 𝑉 × 𝑄, and define 𝑈 = (𝑢, 𝑝) ∈ 𝑋 (as well as
𝑊 = (𝑣, 𝑞) ∈ 𝑋 , then we can more abstractly write the problem as finding 𝑈 ∈ 𝑋 such that

𝑐(𝑈,𝑊 ) = 𝐹 (𝑊 ), (6.7)

where for the case of Stokes equation,

𝑐(𝑈,𝑊 ) = 𝑎(𝑢, 𝑣) + 𝑏(𝑣, 𝑝) + 𝑏(𝑢, 𝑞), 𝐹 (𝑊 ) =

∫︁
Ω

𝑓 · 𝑣𝑑 𝑥. (6.8)

There is a challenge with Stokes equation which is that it is not coercive, i.e. there does not exist a constant 𝐶 > 0
such that

‖𝑈‖2𝑋 ≤ 𝐶𝑐(𝑈,𝑈), ∀𝑈 ∈ 𝑋, (6.9)

where here we use the product norm

‖𝑈‖2𝑋 = ‖𝑢‖2𝐻1(Ω) + ‖𝑝‖2𝐿2(Ω). (6.10)

This means that we can’t use the Lax Milgram Theorem to show existence and uniqueness of solutions for the vari-
ational formulation or any finite element discretisations of it, and we can’t use Céa’s Lemma to estimate numerical
errors in the finite element discretisation. Instead we have to use a more general tool, the inf-sup theorem.

Exercise 6.3 Show that the form 𝑐(·, ·) is not coercive by considering the case 𝑣 = 0.

6.3 The inf-sup condition

� Tip

The key to understanding this section and the following one is to have a good recollection of the definition of
dual spaces and dual space norms given in the earlier section on Linear forms on Hilbert spaces. It is a good
idea to go back and review that section before you carry on.

The critical tool in mixed problems is the inf-sup condition for a bilinear form on 𝑉 × 𝑄, which says that there
exists 𝛽 > 0 such that
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inf
0 ̸=𝑞∈𝑄

sup
0̸=𝑣∈𝑉

𝑏(𝑣, 𝑞)

‖𝑣‖𝑉 ‖𝑞‖𝑄
≥ 𝛽. (6.11)

For brevity, we will drop the ̸= 0 condition in subsequent formulae. To understand this condition, we consider the
map 𝐵 : 𝑉 → 𝑄′ given by

𝐵𝑣[𝑝] = 𝑏(𝑣, 𝑝), ∀𝑝 ∈ 𝑄, (6.12)

and the transpose operator 𝐵* : 𝑄→ 𝑉 ′, by

𝐵*𝑝[𝑣] = 𝑏(𝑣, 𝑝), ∀𝑣 ∈ 𝑉. (6.13)

Here, 𝐵𝑣 is the map 𝐵 applied to 𝑣: 𝐵𝑣 is an element of the dual space 𝑄′ which itself maps elements of 𝑄 to R.
𝐵*𝑝 is the image of the map 𝐵* applied to 𝑝: 𝐵*𝑝 is an element of the dual space 𝑉 ′ which itself maps elements
of 𝑉 to R.

The norm of 𝐵*𝑞 is

‖𝐵*𝑞‖𝑉 ′ = sup
𝑣∈𝑉

𝑏(𝑣, 𝑞)

‖𝑣‖𝑉
. (6.14)

This allows us to rewrite the inf-sup condition as

inf
𝑞∈𝑄

‖𝐵*𝑞‖𝑉 ′

‖𝑞‖𝑄
≥ 𝛽, (6.15)

which is also equivalent to

‖𝐵*𝑞‖𝑉 ′ ≥ 𝛽‖𝑞‖𝑄, ∀𝑞 ∈ 𝑄. (6.16)

This tells us that the map 𝐵* is injective, since if there exist 𝑞1, 𝑞2 such that 𝐵*𝑞1 = 𝐵*𝑞2, then 𝐵*(𝑞1 − 𝑞2) =
0 =⇒ 0 = ‖𝐵*(𝑞1 − 𝑞2)‖𝑉 ≥ 𝛽‖𝑞1 − 𝑞2‖𝑄, i.e. 𝑞1 = 𝑞2.

In finite dimensions (such as for our finite element spaces), injective𝐵* is equivalent to surjective𝐵 (via the rank-
nullity theorem). In infinite dimensions, such as the case𝐻1× �̊�2 that we are considering for Stokes equation, the
situation is more complicated and is governed by the Closed Range Theorem (which we allude to here but do not
state or prove), which tells us that for Hilbert spaces and continuous bilinear forms 𝑏(𝑣, 𝑞), injective 𝐵* is indeed
equivalent to surjective 𝐵.

The Closed Range Theorem (and the rank-nullity theorem, its finite dimensional version) further characterises
these maps using perpendicular spaces.

Definition 6.4 (Perpendicular space) For a subspace 𝑍 ⊂ 𝑄 of a Hilbert space 𝑄, the perpendicular space 𝑍⊥

of 𝑍 in 𝑄 is

𝑍⊥ = {𝑞 ∈ 𝑄 : ⟨𝑞, 𝑝⟩𝑄 = 0, ∀𝑝 ∈ 𝑍} . (6.17)
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In finite dimensions, we have that𝐵* defines a one-to-one mapping from (Ker𝐵*)⊥ ⊂ 𝑄 (the perpendicular space
to the kernel Ker𝐵* of 𝐵*) to Im(𝐵*) (the image space of 𝐵*). This is also true in infinite dimensions under the
conditions of the Closed Range Theorem.

This means that for any 𝐹 ∈ Im(𝐵*), we can find 𝑞 ∈ (Ker𝐵*)⊥ such that 𝐵*𝑞 = 𝐹 . Further, we have

‖𝐹‖𝑉 ′ ≥ 𝛽‖𝑞‖𝑄, (6.18)

via the inf-sup condition.

Finally, it is useful to characterise Im(𝐵*). In R𝑛, we are used to the rank-nullity theorem telling us that Im(𝐵*) =
(Ker𝐵*)⊥. However, here 𝐵* maps to 𝑉 ′, not 𝑉 , so this does not make sense. When considering maps between
dual spaces, we have to generalise this idea to polar spaces.

Definition 6.5 (Polar space) For 𝑍 a subspace of a Hilbert space 𝑄, the polar space 𝑍0 is the subspace of 𝑄′ of
continuous linear functionals that vanish on 𝑍 i.e.

𝑍0 = {𝐹 ∈ 𝑄′ : 𝐹 [𝑞] = 0∀𝑞 ∈ 𝑍} . (6.19)

Then the dual space version of the rank-nullity theorem (and the Closed Range Theorem for infinity dimensional
Hilbert spaces) tells us that

Im(𝐵*) = (Ker𝐵)0. (6.20)

Equipped with this tool, we can look at solveability of mixed problems.

6.4 Solveability of mixed problems

For symmetric, mixed problems in two variables, sufficient conditions for existence are given by the following
result of Franco Brezzi.

Theorem 6.6 (Brezzi’s conditions) Let 𝑎(𝑢, 𝑣) be a continuous bilinear form defined on 𝑉 ×𝑉 , and 𝑏(𝑣, 𝑞) be a
continuous bilinear form defined on 𝑉 ×𝑄. Consider the variational problem for (𝑢, 𝑝) ∈ 𝑉 ×𝑄,

𝑎(𝑢, 𝑣) + 𝑏(𝑣, 𝑝) = 𝐹 [𝑣], ∀𝑣 ∈ 𝑉,

𝑏(𝑢, 𝑞) = 𝐺[𝑞], ∀𝑞 ∈ 𝑄,
(6.21)

for 𝐹 and 𝐺 continuous linear forms on 𝑉 and 𝑄 respectively.

Define the kernel 𝑍 by

𝑍 = {𝑢 ∈ 𝑉 : 𝑏(𝑢, 𝑞) = 0∀𝑞 ∈ 𝑄} . (6.22)

Assume the following conditions:

1. 𝑎(𝑢, 𝑣) is coercive on the kernel 𝑍 with coercivity constant 𝛼.

2. There exists 𝛽 > 0 such that the inf-sup condition for 𝑏(𝑣, 𝑞) holds.

Then there exists a unique solution (𝑢, 𝑝) to the variational problem and we have the stability bound

‖𝑢‖𝑉 ≤ 1

𝛼
‖𝐹‖𝑉 ′ +

2𝑀

𝛼𝛽
‖𝐺‖𝑄′ ,

‖𝑝‖𝑄 ≤ 2𝑀

𝛼𝛽
‖𝐹‖𝑉 ′ +

2𝑀2

𝛼𝛽2
‖𝐺‖𝑄′ ,

(6.23)
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where 𝑀 is the continuity constant of 𝑎.

Proof 6.7 To show existence, we first note that the inf-sup condition implies that 𝐵 is surjective, so we can always
find 𝑢𝑔 ∈ 𝑉 such that 𝐵𝑢𝑔 = 𝑔. Now we write 𝑢 = 𝑢𝑔 + 𝑢𝑍 , and we have the following mixed problem,

𝑎(𝑢𝑍 , 𝑣) + 𝑏(𝑣, 𝑝) = 𝐹 [𝑣]− 𝑎(𝑢𝑔, 𝑣), ∀𝑣 ∈ 𝑉,

𝑏(𝑢𝑍 , 𝑞) = 0.
(6.24)

Thus, 𝐵𝑢𝑍 = 0, i.e. 𝑢𝑍 ∈ 𝑍. Choosing 𝑣 ∈ 𝑍 ⊂ 𝑉 , we get

𝑎(𝑢𝑍 , 𝑣) = 𝐹 ′[𝑣] = 𝐹 [𝑣]− 𝑎(𝑢𝑔, 𝑣), ∀𝑣 ∈ 𝑍, (6.25)

for 𝑢𝑍 ∈ 𝑍. Since 𝑎(𝑢, 𝑣) is coercive on 𝑍, and 𝐹 ′ is continuous (from continuity of 𝐹 and 𝑎(𝑢, 𝑣)), Lax Milgram
tells us that 𝑢𝑍 ∈ 𝑍 exists and is unique. We now notice that

𝐿[𝑣] = 𝐹 [𝑣]− 𝑎(𝑢𝑔 + 𝑢𝑍 , 𝑣) = 0∀𝑣 ∈ 𝑍, (6.26)

so 𝐿[𝑣] ∈ 𝑍0 = (Ker𝐵)0 = Im𝐵*. This means that there exists 𝑝 ∈ 𝑄 such that𝐵*𝑝 = 𝐿. Hence, we have found
(𝑢, 𝑝) that solve our mixed variational problem.

To show uniqueness, we need to show that if there exists (𝑢1, 𝑝1) and (𝑢2, 𝑝2) that both solve our mixed variational
problem, then (𝑢, 𝑝) = (𝑢1 − 𝑢2, 𝑝1 − 𝑝2) = 0. To that end, we take the difference of the equations for the two
solutions, and get

𝑎(𝑢, 𝑣) + 𝑏(𝑣, 𝑝) = 0, ∀𝑣 ∈ 𝑉,

𝑏(𝑢, 𝑞) = 0,∀𝑞 ∈ 𝑄.
(6.27)

It is our goal to show that (𝑢, 𝑝) = 0. We have again that 𝑢 ∈ 𝑍, and taking 𝑣 = 𝑢 gives

0 = 𝑎(𝑢, 𝑢) ≥ 𝛼‖𝑢‖2𝑉 =⇒ 𝑢 = 0. (6.28)

Substituting this into the problem for (𝑢, 𝑝) gives

𝑏(𝑣, 𝑝) = 0, ∀𝑣 ∈ 𝑉. (6.29)

Since 𝑏 is injective, this means that 𝑝 = 0 as required.

Having shown existence and uniqueness of (𝑢, 𝑝), we want to develop the stability bounds. We now assume that
(𝑢, 𝑝) solves the variational problem. We first use the surjectivity of 𝐵 to find 𝑢𝑔 such that 𝐵𝑢𝑔 = 𝐺. This means
that

𝑏(𝑞, 𝑢𝑔) = 𝐺[𝑞],∀𝑞 ∈ 𝑄, (6.30)

Then, for all 𝑞 ∈ 𝑄,

‖𝐺‖𝑄′ = sup
𝑞∈𝑄

𝑏(𝑞, 𝑢𝑔)

‖𝑞‖𝑄

= sup
𝑞∈𝑄

𝑏(𝑞, 𝑢𝑔)

‖𝑞‖𝑄‖𝑢𝑔‖𝑉
‖𝑢𝑔‖𝑉

≥ 𝛽‖𝑢𝑔‖,

(6.31)

by the inf-sup condition.

From the Lax Milgram theorem applied to (6.25), we get
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‖𝑢𝑍‖𝑉 ≤ 1

𝛼

(︂
‖𝐹‖𝑉 ′ + sup

𝑣∈𝑉

𝑎(𝑢𝑔, ·)
‖𝑣‖𝑉

)︂
≤ 1

𝛼
‖𝐹‖𝑉 ′ +

𝑀

𝛼
‖𝑢𝑔‖𝑉 ,

≤ 1

𝛼
‖𝐹‖𝑉 ′ +

𝑀

𝛼𝛽
‖𝐺‖𝑄′ ,

(6.32)

where 𝑀 is the continuity constant of 𝑎(·, ·).

Then we have

‖𝑢‖𝑉 = ‖𝑢𝑍 + 𝑢𝑔‖𝑉 ≤ ‖𝑢𝑍‖𝑉 + ‖𝑢𝑔‖𝑉 ,

≤ 1

𝛼
‖𝐹‖𝑉 ′ +

𝑀

𝛼𝛽
‖𝐺‖𝑄′ +

1

𝛽
‖𝐺‖𝑄′ ,

≤ 1

𝛼
‖𝐹‖𝑉 ′ +

2𝑀

𝛼𝛽
‖𝐺‖𝑄′ ,

(6.33)

making use of 𝑀 > 𝛼 (we have 𝛼‖𝑢‖2 ≤ 𝑎(𝑢, 𝑢) ≤𝑀‖𝑢‖2 for any 𝑢 ∈ 𝑉 ). This gives the estimate for ‖𝑢‖𝑉 .

To estimate ‖𝑝‖𝑄, we rearrange the variational problem to get

𝑏(𝑝, 𝑣) = 𝐹 ′[𝑣] = 𝐹 [𝑣]− 𝑎(𝑢, 𝑣), ∀𝑣 ∈ 𝑉. (6.34)

As discussed previously, 𝐹 ′ ∈ 𝑍0, hence this equation is solveable for 𝑝 and we have

‖𝐹 ′‖𝑉 ′ ≥ 𝛽‖𝑝‖𝑄, (6.35)

Hence,

‖𝑝‖𝑄 ≤ 1

𝛽
‖𝐹‖𝑉 ′ +

𝑀

𝛽
‖𝑢‖𝑉 ,

≤ 1

𝛽
‖𝐹‖𝑉 ′ +

𝑀

𝛽

(︂
1

𝛼
‖𝐹‖𝑉 ′ +

2𝑀

𝛼𝛽
‖𝐺‖𝑉 ′

)︂
,

≤ 2𝑀

𝛼𝛽
‖𝐹‖𝑉 ′ +

2𝑀2

𝛼𝛽2
‖𝐺‖𝑄′ ,

(6.36)

as required, having used 𝑀 > 𝛼 again.

6.5 Solveability of Stokes equation

Now we return to our variational formulation of Stokes equation and consider the Brezzi conditions for it. In the
case of Stokes, the operator 𝐵* is the divergence operator. It can be shown (beyond the scope of this course) that
𝐵* maps from the whole of 𝑉 onto 𝑄 in this case, so the inf-sup condition holds. It can also be shown that 𝑎 is
coercive on the whole of 𝑉 , i.e. there exists 𝛼 > 0 such that

𝑎(𝑣, 𝑣) ≥ 𝛼‖𝑣‖2𝑉 . (6.37)

This result is called Korn’s identity (also beyond our scope). Then of course, 𝑎 is in particular coercive on the
divergence-free subspace 𝑍. Then we immediately get solveability of the variational Stokes problem.
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6.6 Discretisation of Stokes equations

To discretise the Stokes equations, we need to choose finite element spaces 𝑉ℎ ⊂ 𝑉 and 𝑄ℎ ⊂ 𝑄. Then we apply
the Galerkin approximation, restricting the numerical solution (𝑢ℎ, 𝑝ℎ) to 𝑉ℎ × 𝑄ℎ as well as the test functions
(𝑣ℎ, 𝑞ℎ). If the bilinear form 𝑐(𝑋,𝑌 ) were coercive, we could immediately get existence, uniqueness and stability
for the finite element discretisation. However, we don’t have it. This means that in particular we may have issues
with the uniqueness of 𝑝ℎ. To control these issues, we need to choose 𝑉ℎ and 𝑄ℎ such that we have the discrete
inf-sup condition

inf
𝑞∈𝑄ℎ

sup
𝑣∈𝑉ℎ

𝑏(𝑣, 𝑞)

‖𝑣‖𝑉 ‖𝑞‖𝑄
≥ 𝛽ℎ, (6.38)

with 𝛽ℎ > 0. Note that 𝛽ℎ ̸= 𝛽 in general, but it does not matter as long as 𝛽ℎ is independent of the mesh size
parameter ℎ.

If the discrete inf-sup condition is satisfied then we just need to also check whether 𝑎(·, ·) is coercive on the discrete
kernel 𝑍ℎ defined by

𝑍ℎ = {𝑢 ∈ 𝑉ℎ : 𝑏(𝑢, 𝑞) = 0∀𝑞 ∈ 𝑄ℎ} . (6.39)

Note that 𝑍ℎ ̸⊂ 𝑍 in general (unless 𝑉ℎ and 𝑄ℎ have been specially chosen to allow that). However, the details
do not matter since we already noted that 𝑎(·, ·) is coercive on all of 𝑉 , so must be coercive on 𝑍ℎ ⊂ 𝑉 in
particular. Hence, as long as the discrete inf-sup condition is satisfied, we immediately get existence and uniqueness
of solutions of the finite element approximation of Stokes equation from Theorem Brezzi’s conditions, along with
the stability bounds on (𝑢ℎ, 𝑝ℎ), but with 𝛽 replaced by 𝛽ℎ.

We are now in a position to estimate errors in the finite element approximation in a manner very similar to Céa’s
Lemma.

Theorem 6.8 Let 𝑉ℎ ⊂ 𝑉 and 𝑄ℎ ⊂ 𝑄 be a pair of finite element spaces satisfying the discrete inf-sup condition
for some 𝛽ℎ > 0. Then,

‖𝑢ℎ − 𝑢‖𝑉 ≤ 4𝑀𝑀𝑏

𝛼𝛽ℎ
𝐸𝑢 +

𝑀𝑏

𝛼
𝐸𝑝,

‖𝑝ℎ − 𝑝‖𝑉 ≤ 3𝑀2𝑀𝑏

𝛼𝛽2
ℎ

𝐸𝑢 +
3𝑀𝑀𝑏

𝛼𝛽ℎ
𝐸𝑝.

(6.40)

where 𝑀𝑏 is the continuity constant of 𝑏(·, ·), and where we have the best approximation errors of 𝑢 and 𝑝 in 𝑉ℎ
and 𝑄ℎ respectively,

𝐸𝑢 = inf
𝑢𝐼∈𝑉ℎ

‖𝑢− 𝑢𝐼‖𝑉 ,

𝐸𝑝 = inf
𝑝𝐼∈𝑄ℎ

‖𝑝− 𝑝𝐼‖𝑄.
(6.41)

Proof 6.9 Since 𝑉ℎ ⊂ 𝑉 and 𝑄ℎ ⊂ 𝑄, we can choose (𝑣, 𝑞) ∈ 𝑉ℎ ×𝑄ℎ in both the original variational problem
and the finite element variational problem and subtract one from the other, to obtain

𝑎(𝑢ℎ − 𝑢, 𝑣) + 𝑏(𝑣, 𝑝ℎ − 𝑝) = 0, ∀𝑣 ∈ 𝑉ℎ,

𝑏(𝑢ℎ − 𝑢, 𝑞) = 0, ∀𝑞 ∈ 𝑄ℎ.
(6.42)

This is the mixed finite element version of Galerkin orthogonality that we saw earlier in the course. Replacing
𝑢 = 𝑢− 𝑢𝐼 + 𝑢𝐼 and 𝑝 = 𝑝− 𝑝𝐼 + 𝑝𝐼 for (𝑢𝐼 , 𝑝𝐼) ∈ 𝑉ℎ ×𝑄ℎ and rearranging, we get
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𝑎(𝑢ℎ − 𝑢𝐼 , 𝑣) + 𝑏(𝑣, 𝑝ℎ − 𝑝𝐼) = 𝐹𝑢𝐼 ,𝑝𝐼
[𝑣] := 𝑎(𝑢− 𝑢𝐼 , 𝑣) + 𝑏(𝑣, 𝑝− 𝑝𝐼), ∀𝑣 ∈ 𝑉ℎ,

𝑏(𝑢ℎ − 𝑢𝐼 , 𝑞) = 𝐺𝑢𝐼
[𝑞] := 𝑏(𝑢− 𝑢𝐼 , 𝑞), ∀𝑞 ∈ 𝑄ℎ.

(6.43)

Hence, from the stability bound,

‖𝑢ℎ − 𝑢𝐼‖𝑉 ≤ 1

𝛼
‖𝐹𝑢𝐼 ,𝑝𝐼

‖𝑉 ′ +
2𝑀

𝛼𝛽ℎ
‖𝐺𝑢𝐼

‖𝑄′ ,

‖𝑝ℎ − 𝑝𝐼‖𝑄 ≤ 2𝑀

𝛼𝛽ℎ
‖𝐹𝑢𝐼 ,𝑝𝐼

‖𝑉 ′ +
2𝑀2

𝛼𝛽2
ℎ

‖𝐺𝑢𝐼
‖𝑄′ .

(6.44)

Using continuity of 𝑎(·, ·) and 𝑏(·, ·), we have

‖𝐹𝑢𝐼 ,𝑝𝐼
‖𝑉 ′ ≤ sup

𝑣∈𝑉

𝑎(𝑢− 𝑢𝐼 , 𝑣)

‖𝑣‖𝑉
+ sup

𝑣∈𝑉

𝑏(𝑣, 𝑝− 𝑝𝐼)

‖𝑣‖𝑉
≤𝑀‖𝑢− 𝑢𝐼‖𝑉 +𝑀𝑏‖𝑝− 𝑝𝐼‖𝑄,

‖𝐺𝑢𝐼
‖𝑄′ = sup

𝑝∈𝑄

𝑏(𝑢− 𝑢𝐼 , 𝑝)

‖𝑝‖𝑄
≤𝑀𝑏‖𝑢− 𝑢𝐼‖𝑉 .

(6.45)

Substitution then gives

‖𝑢ℎ − 𝑢𝐼‖𝑉 ≤ 1

𝛼
(𝑀‖𝑢− 𝑢𝐼‖𝑉 +𝑀𝑏‖𝑝− 𝑝𝐼‖𝑄) +

2𝑀

𝛼𝛽ℎ
𝑀𝑏‖𝑢− 𝑢𝐼‖𝑉 . (6.46)

We have

𝛽ℎ ≤ inf
𝑞∈𝑄ℎ

sup
𝑣∈𝑉ℎ

𝑏(𝑣, 𝑞)

‖𝑞‖𝑄‖𝑣‖𝑉
≤𝑀𝑏,

and hence,

‖𝑢ℎ − 𝑢𝐼‖𝑉 ≤ 3𝑀𝑀𝑏

𝛼𝛽ℎ
‖𝑢− 𝑢𝐼‖𝑉 +

𝑀𝑏

𝛼
‖𝑝− 𝑝𝐼‖𝑄, (6.47)

and

‖𝑝ℎ − 𝑝𝐼‖𝑄 ≤ 2𝑀

𝛼𝛽ℎ
(𝑀‖𝑢− 𝑢𝐼‖𝑉 +𝑀𝑏‖𝑝− 𝑝𝐼‖𝑄) +

2𝑀2

𝛼𝛽2
ℎ

𝑀𝑏‖𝑢− 𝑢𝐼‖𝑉

≤ 3𝑀2𝑀𝑏

𝛼𝛽2
ℎ

‖𝑢− 𝑢𝐼‖𝑉 +
2𝑀𝑀𝑏

𝛼𝛽ℎ
‖𝑝− 𝑝𝐼‖𝑄.

(6.48)

We then use the triangle inequality to write

‖𝑢− 𝑢ℎ‖𝑉 ≤ ‖𝑢− 𝑢𝐼‖𝑉 + ‖𝑢ℎ − 𝑢𝐼‖𝑉 ,

≤ 4𝑀𝑀𝑏

𝛼𝛽ℎ
‖𝑢− 𝑢𝐼‖𝑉 +

𝑀𝑏

𝛼
‖𝑝− 𝑝𝐼‖𝑄,

(6.49)

‖𝑝− 𝑝ℎ‖𝑄 ≤ ‖𝑝− 𝑝𝐼‖𝑄 + ‖𝑝ℎ − 𝑝𝐼‖𝑄,

≤ 3𝑀2𝑀𝑏

𝛼𝛽2
ℎ

‖𝑢− 𝑢𝐼‖𝑉 +
3𝑀𝑀𝑏

𝛼𝛽ℎ
‖𝑝− 𝑝𝐼‖𝑄.

(6.50)
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Finally, taking the infimum over the all 𝑢𝐼 ∈ 𝑉 and all 𝑝𝐼 ∈ 𝑄 gives the result.

This theorem tells us that if we can approximate the solution (𝑢, 𝑝) well in 𝑉ℎ × 𝑄ℎ, then the finite element
approximation error will also be small.

For scalar𝐻1 elliptic problems like the Poisson equation that we studied earlier in the course, finding a suitable 𝑉ℎ
is easy, as any continuous finite element space will do. In contrast, for Stokes equation it is not straightforward to
find pairs of finite element spaces 𝑉ℎ × 𝑄ℎ that satisfy this discrete inf-sup condition. For example, the simplest
idea of trying 𝑄ℎ to be P1 (linear Lagrange elements on triangles) and 𝑉ℎ to be (𝑃1)𝑑 (linear Lagrange elements
for each Cartesian component of velocity from 1 up to the dimension 𝑑) does not work in general. We call this
combination P1-P1.

Exercise 6.10 Consider a square domain divided into 4 smaller and equal squares, and then subdivide the squares
into right-angled triangles so all the hypotenuses meet in the middle (like the UK flag). Show that there exists
𝑝 ∈ 𝑄ℎ such that 𝑏(𝑣, 𝑝) = 0 for all 𝑣 ∈ 𝑉ℎ. (Don’t forget to include the boundary conditions for 𝑉ℎ and the mean
zero condition for 𝑝.) Conclude that the inf-sup condition does not hold.

We now discuss some examples of finite element pairs that do satisfy the inf-sup condition with 𝛽ℎ > 0 independent
of ℎ.

6.7 The MINI element

In general, the choice P1-P1 produces 𝛽ℎ → 0 as ℎ → 0: the discretisation is not stable. This means that the
image of the divergence applied to 𝑉ℎ does not converge to 𝑄 as ℎ→ 0. The way to fix this is to enrich the (𝑃1)𝑑
space for velocity, so that the image is larger. For the MINI element, this is done by considering the following finite
element, P1+B3.

Definition 6.11 (P1+B3) The P1+B3 element (𝐾,𝑃,𝒩 ) is given by:

1. 𝐾 is a triangle.

2. The shape functions are linear combinations of linear functions and cubic “bubble” functions that vanish
on the boundary of 𝐾.

3. The nodal variables are point evaluations at the vertices plus point evaluation at the triangle centre.

We then take 𝑉ℎ as the (𝑃1+𝐵3)𝑑 continuous finite element space (i.e. each Cartesian component of the functions
in 𝑉ℎ is from 𝑃1 +𝐵3. We choose 𝑃1 for 𝑄ℎ.

To prove that the MINI element satisfies the inf-sup condition, we use the following result.

Lemma 6.12 (Fortin’s trick) Assume that the inf-sup condition holds for $b(v,q)$ over $Vtimes Q$ with inf-sup
constant $beta>0$. If there exists a linear operator Πℎ : 𝑉 → 𝑉ℎ such that

𝑏(𝑣 −Πℎ𝑣, 𝑞) = 0, ∀𝑣 ∈ 𝑉, 𝑞 ∈ 𝑄ℎ,

‖Πℎ𝑣‖𝑉 ≤ 𝐶Π‖𝑣‖𝑉 ,
(6.51)

then the discrete inf-sup condition holds.

Proof 6.13 For any 𝑞ℎ ∈ 𝑄ℎ, we have

sup
𝑣ℎ∈𝑉ℎ

𝑏(𝑣ℎ, 𝑞ℎ)

‖𝑣ℎ‖𝑉
≥ sup

𝑣∈𝑉

𝑏(Πℎ𝑣, 𝑞ℎ)

‖Πℎ𝑣‖𝑉
= sup

𝑣∈𝑉

𝑏(𝑣, 𝑞ℎ)

‖Πℎ𝑣‖𝑉
≥ sup

𝑣∈𝑉

𝑏(𝑣, 𝑞ℎ)

𝐶Π‖𝑣‖𝑉
≥ 𝛽

𝐶Π
‖𝑞ℎ‖𝑄, (6.52)

and rearranging and taking the infimum over 𝑞ℎ ∈ 𝑄ℎ gives

inf
𝑞ℎ∈𝑄ℎ

sup
𝑣ℎ∈𝑉ℎ

𝑏(𝑣ℎ, 𝑞ℎ)

‖𝑞ℎ‖𝑄‖𝑣ℎ‖𝑉
= 𝛽ℎ :=

𝛽

𝐶Π
. (6.53)
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The following lemma gives a practical way to find Πℎ.

Lemma 6.14 Assume that there exist two maps Π1,Π2 : 𝑉 → 𝑉ℎ, with

‖Π1𝑣‖𝑉 ≤ 𝑐1‖𝑣‖𝑉 , ∀𝑣 ∈ 𝑉,

‖Π2(𝐼 −Π1)𝑣‖𝑉 ≤ 𝑐2‖𝑣‖𝑉 , ∀𝑣 ∈ 𝑉,

𝑏(𝑣 −Π2𝑣, 𝑞ℎ) = 0, ∀𝑣 ∈ 𝑉, 𝑞ℎ ∈ 𝑄ℎ,

(6.54)

where the constants 𝑐1 and 𝑐2 are independent of ℎ. Then the operator Πℎ, defined by

Πℎ𝑢 = Π1𝑢+Π2(𝑢−Π1𝑢), (6.55)

satisfies the conditions of Fortin’s trick.

Proof 6.15 We have

𝑏(Πℎ𝑤, 𝑞ℎ) = 𝑏(Π2(𝑤 −Π1)𝑤, 𝑞ℎ) + 𝑏(Π1𝑤, 𝑞ℎ),

= 𝑏(𝑤 −Π1𝑤, 𝑞ℎ) + 𝑏(Π1𝑤, 𝑞ℎ)

= 𝑏(𝑤, 𝑞ℎ),

(6.56)

which gives the second condition of Fortin’s trick, and

‖Πℎ𝑤‖𝑉 ≤ ‖Π2(𝑤 −Π1𝑤)‖𝑉 + ‖Π1𝑤‖𝑉 ≤ (𝑐1 + 𝑐2)‖𝑤‖𝑉 . (6.57)

For continuous finite element spaces, the Clement operator (which we shall not describe here) satifies the condition
on Π1. In fact, the Clement operator generally satisfies

|𝑣 −Π1𝑣|𝐻𝑚(𝐾) ≤ 𝑐

⎛⎝ ∑︁
𝐾′∩�̄� ̸=0

ℎ1−𝑚
𝐾′ ‖𝑣‖𝐻1(𝐾)

⎞⎠ (6.58)

where �̄� is the closure of any triangle 𝐾, and the sum is taken over all triangles 𝐾 ′ that share an edge or a vertex
with triangle 𝐾.

We now use this technique to prove the discrete inf-sup condition for the MINI element.

Theorem 6.16 The MINI element satisfies the discrete inf-sup condition.

Proof 6.17 We can use the Clement operator for Π1. Π2 : 𝑉 → (𝐵3)
2 ⊂ 𝑉ℎ (i.e. the subspace of 𝑉ℎ of functions

that vanish on all vertices (and hence all edges) is defined via

0 = 𝑏(Π2𝑣 − 𝑣, 𝑞ℎ), ∀𝑞ℎ ∈ 𝑄ℎ. (6.59)

This is well defined since

𝑏(Π2𝑣 − 𝑣, 𝑞ℎ) =

∫︁
Ω

𝑞ℎ∇ · (Π2𝑣 − 𝑣)𝑑 𝑥

=

∫︁
Ω

(𝑣 −Π2𝑣)∇𝑞ℎ𝑑 𝑥,
(6.60)
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where we were allowed to integrate by parts since 𝑣,Π2𝑣, 𝑞ℎ are all in 𝐻1(Ω). We see that our definition can be
satisfied by picking Π2𝑣 to be the function in $(B_3)^2$ such that

∫︁
𝐾

Φ2𝑣𝑑 𝑥𝑥 =

∫︁
𝐾

𝑣𝑑 𝑥𝑥, (6.61)

for each triangle $K$.

It can be shown using an inverse inequality (we will take it as read here) that

‖Π2𝑣‖𝐻𝑟(𝐾) ≤ 𝑐ℎ−𝑟
𝐾 ‖𝑣‖𝐿2(𝐾), ∀𝑣 ∈ 𝑉, 𝑟 = 0, 1. (6.62)

Combining this with Equation (6.58) gives Equation (6.54) and hence we have shown that Πℎ has the properties
needed for Fortin’s trick.
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CHAPTER

ZERO

THE IMPLEMENTATION EXERCISE

The object of the implementation exercise is to gain an understanding of the finite element method by producing
a working one and two dimensional finite element solver library. Along the way you will have the opportunity to
pick up valuable scientific computing skills in coding, software engineering and rigorous testing.

This part of the module is very practical, and there are never conventional lectures for it, even when everything is
taught on campus. Each week you should work through the notes and videos until you come to an exercise. Each
exercise will invite you to implement another part of a finite element implementation, so that by the end of the term
we will be solving finite element problems.

Along the way, there will be the opportunity to get help and feedback through the module Piazza board, weekly
online labs, and through pull requests for feedback in weeks 4 and 7.

0.1 Formalities and marking scheme

The implementation exercise is due at 1300 on Friday 22 March 2024. Submission is via GitHub: the last commit
pushed to GitHub and dated before the deadline will be marked.

The marking scheme will be as follows:

Excellent (18-20)
All parts of the implementation are correct and all tests pass. The code style is always very clear and the
implementation of every exercise is transparent and elegant.

Good (14-17)
The implementation is correct but let down somewhat by poor coding style. Alternatively, submissions which
are correct and well written up to and including solving the Helmholtz problem but which do not include a
correct solution to boundary conditions will earn an upper second.

Pass (10-13)
There are significant failings in the implementation resulting in many test failures, and/or the coding style is
sufficiently poor that the code is hard to understand.

Fail (0-9)
The implementation is substantially incomplete. Correct implementations may have been provided for some
of the earlier exercises but the more advanced parts of the implementation exercise have not been attempted
or do not work.

Code execution performance is not a primary concern of this module, however the code must still be algorithmically
correct. This means not just returning the correct answer but also having the correct algorithmic complexity.
Occasionally students submit code that uses quadratic algorithms where linear ones would be possible. The result
is that examples that should run in seconds and take megabytes of memory instead take gigabytes of memory and
many hours to complete. Such submissions are incorrect, and will be marked as such.
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0.2 Obtaining the skeleton code

This section assumes you’ve already done everything to set up the software tools you need.

0.2.1 Set up a folder to hold the repository and virtual environment

You can call this folder anything you like, and store it anywhere that suits you, though don’t move it once you’ve
created it as this will break the virtual environment. Suppose you would like to keep the new folder in a folder
called docs in your home directory. We first open a terminal and switch to the folder:

$ cd docs

Note that $ is the command prompt (which might be a different character such as % or > for you). You don’t
type the prompt. Start with cd. Next we create the folder we’ll use for this course. Suppose we choose to call it
finite-element, then we would type:

$ mkdir finite-element

mkdir stands for “make directory”. Directory is an alternative term to folder. Finally we switch (“change direc-
tory”) into that folder:

$ cd finite-element

0.2.2 Setting up your venv

We’re going to use a Python venv. This is a private Python environment in which we’ll install the packages we
need, including our own implementation exercise. This minimises interference between this project and anything
else which might be using Python on the system. With your current working folder set to the course folder, run:

$ python3 -m venv fe_venv

If your Python interpreter has a different name (e.g. python3.11 or py) then you type that instead.

0.2.3 Activating your venv

Every time you want to work on the implementation exercise, you need to activate the venv. On Linux or Mac do
this with:

$ source fe_venv/bin/activate

while on Windows the command is:

> source fe_venv/Scripts/activate

Obviously if you are typing this in a directory other than the one containing the venv, you need to modify the path
accordingly.
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0.2.4 Setting up your repository

We’re using a tool called GitHub classroom to automate the creation of your copies of the repository. To create
your repository, click here.

0.2.5 Cloning a local copy

At the command line on your working machine type:

$ git clone <url> finite-element-course

Substituting your git repository url for <url>. Your git repository url can be found by clicking on clone or download
at the top right of your repository page on GitHub.

0.2.6 Installing the course Python package

Your git repository contains a Python package. Installing this will cause the other Python packages on which it
depends to be installed into your venv, and will create various visualisation scripts you’ll need later in the module.
Run:

$ python -m pip install -e finite-element-course/

0.3 Skeleton code documentation

There is web documentation for the complete fe_utils package. There is also an alphabetical index and a search
page.

0.4 How to do the implementation exercises

The implementation exercises build up a finite element library from its component parts. Quite a lot of the coding
infrastructure you will need is provided already. Your task is to write the crucial mathematical operations at key
points. The mathematical operations required are described on this website, interspersed with exercises which
require you to implement and test parts of the mathematics.

The code on which you will build is in the fe_utils directory of your repository. The code has embedded
documentation which is used to build the fe_utils package web documentation.

As you do the exercises, commit your code to your repository. This will build up your finite element library. You
should commit code early and often - small commits are easier to understand and debug than large ones.

0.5 Testing your work

As you complete the exercises, there will often be test scripts which exercise the code you have just written. These
are located in the test directory and employ the pytest testing framework. You run the tests with:

$ py.test test_script.py

from the bash command line, replacing test_script.py with the appropriate test file name. The -x option to
py.test will cause the test to stop at the first failure it finds, which is often the best place to start fixing a problem.
For those familiar with debuggers, the --pdb option will drop you into the Python debugger at the first error.

You can also run all the tests by running py.test on the tests directory. This works particularly well with the -x
option, resulting in the tests being run in course order and stopping at the first failing test:
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$ py.test -x tests/

0.6 Coding style and commenting

Computer code is not just functional, it also conveys information to the reader. It is important to write clear,
intelligible code. The readability and clarity of your code will count for marks.

The Python community has agreed standards for coding, which are documented in PEP8. There are programs
and editor modes which can help you with this. The skeleton implementation follows PEP8 quite closely. You
are encouraged, especially if you are a more experienced programmer, to follow PEP8 in your implementation.
However nobody is going to lose marks for PEP8 failures.

0.7 Getting help

It’s expected that you will find there are tasks in the implementation exercise that you don’t know how to do. Your
first port of call should be the Ed forum, followed by the weekly live lab sessions.

0.7.1 Using Ed

The key advantage of asking for help on Ed is that you can do this at any point during the week, whenever you are
stuck. The whole class can see the forum, but you can choose to publish anonymously so nobody need know who
asked the question. You should also watch the other questions as they appear on Ed, because you will find that
you learn a lot from what other people ask, as well as the answers they get. Other students might notice issues that
didn’t even occur to you!

Do please try to answer other students’ questions. Doing so is actually a really effective way of understanding the
work better, since you will be looking at the tasks from another student’s perspective.

0.7.2 Formulating a good question

One of the key skills in getting help with code is to ask the question in a structured way which provides all the
information required by the person helping you. Not only does this radically increase the chances of getting a
useful response first time, but often the process of thinking through how to ask the question leads you to its solution
before you even ask. Please review the information from the second year Principles of Programming instructions
on raising an issue.

ò Note

Please don’t post large pieces of code to Piazza. Just post minimal examples if they help. However always
commit and push your work, and post the git commit hash in the repository. The instructor can always find
your work from the git hash, so long as you’ve pushed to GitHub.
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0.8 Tips and tricks for the implementation exercise

Work from the documentation.
The notes, and particularly the exercise specifications, contain important information about how and what to
implement. If you just read the source code then you will miss out on important information.

Read the hints
The pink sections in the notes starting with a lightbulb are hints. Usually they contain suggestions about how
to go about writing your answer, or suggest Python functions which you might find useful.

Don’t forget the 1D case
Your finite element library needs to work in one and two dimensions.

Return a numpy.array()
Many of the functions you have to write return arrays. Make sure you actually return an array and not a list
(it’s usually fine to build the answer as a list, but convert it to an array before you return it).
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CHAPTER

ONE

NUMERICAL QUADRATURE

The core computational operation with which we are concerned in the finite element method is the integration of
a function over a known reference element. It’s no big surprise, therefore, that this operation will be at the heart of
our finite element implementation.

The usual way to efficiently evaluate arbitrary integrals numerically is numerical quadrature. This basic idea will
already be familiar to you from undergraduate maths (or maybe even high school calculus) as it’s the generalisation
of the trapezoidal rule and Simpson’s rule for integration.

The core idea of quadrature is that the integral of a function 𝑓(𝑋) over an element 𝑒 can be approximated as a
weighted sum of function values evaluated at particular points:∫︁

𝑒

𝑓(𝑋) =
∑︁
𝑞

𝑓(𝑋𝑞)𝑤𝑞 +𝑂(ℎ𝑛) (1.1)

we term the set {𝑋𝑞} the set of quadrature points and the corresponding set {𝑤𝑞} the set of quadrature weights.
A set of quadrature points and their corresponding quadrature weights together comprise a quadrature rule for 𝑒.
For an arbitrary function 𝑓 , quadrature is only an approximation to the integral. The global truncation error in this
approximation is invariably of the form 𝑂(ℎ𝑛) where ℎ is the diameter of the element.

If 𝑓 is a polynomial in𝑋 with degree 𝑝 such that 𝑝 ≤ 𝑛−2 then it is easy to show that integration using a quadrature
rule of degree 𝑛 results in exactly zero error.

Definition 1.1 The degree of precision of a quadrature rule is the largest 𝑝 such that the quadrature rule integrates
all polynomials of degree 𝑝 without error.

1.1 Exact and incomplete quadrature

In the finite element method, integrands are very frequently polynomial. If the quadrature rule employed for a
particular interval has a sufficiently high degree of precision such that there is no quadrature error in the integration,
we refer to the quadrature as exact or complete. In any other case we refer to the quadrature as incomplete.

Typically, higher degree quadrature rules have more quadrature points than lower degree rules. This results in
a trade-off between the accuracy of the quadrature rule and the number of function evaluations, and hence the
computational cost, of an integration using that rule. Complete quadrature results in lower errors, but if the error
due to incomplete quadrature is small compared with other errors in the simulation, particularly compared with
the discretisation error, then incomplete quadrature may be advantageous.
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1.2 Examples in one dimension

We noted above that a few one dimensional quadrature rules are commonly taught in introductory integration
courses. The first of these is the midpoint rule:∫︁ ℎ

0

𝑓(𝑋)d𝑋 = ℎ𝑓(0.5ℎ) +𝑂(ℎ3) (1.2)

In other words, an approximation to the integral of 𝑓 over an interval can be calculated by multiplying the value
of 𝑓 at the mid-point of the interval by the length of the interval. This amounts to approximating the function over
the integral by a constant value.

If we improve our approximation of 𝑓 to a straight line over the interval, then we arrive at the trapezoidal (or
trapezium) rule: ∫︁ ℎ

0

𝑓(𝑋)d𝑋 =
ℎ

2
𝑓(0) +

ℎ

2
𝑓(ℎ) +𝑂(ℎ4) (1.3)

while if we employ a quadratic function then we arrive at Simpson’s rule:∫︁ ℎ

0

𝑓(𝑋)d𝑋 =
ℎ

6
𝑓(0) +

2ℎ

3
𝑓

(︂
ℎ

2

)︂
+
ℎ

6
𝑓(ℎ) +𝑂(ℎ5) (1.4)

1.3 Reference cells

As a practical matter, we wish to write down quadrature rules as arrays of numbers, independent of ℎ. In order to
achieve this, we will write the quadrature rules for a single, reference cell. When we wish to actually integrate a
function over cell, we will change coordinates to the reference cell. We will return to the mechanics of this process
later, but for now it means that we need only consider quadrature rules on the reference cells we choose.

A commonly employed one dimensional reference cell is the unit interval [0, 1], and that is the one we shall adopt
here (the other popular alternative is the interval [−1, 1], which some prefer due to its symmetry about the origin).

In two dimensions, the cells employed most commonly are triangles and quadrilaterals. For simplicity, in this
course we will only consider implementing the finite element method on triangles. The choice of a reference
interval implies a natural choice of reference triangle. For the unit interval the natural correspondence is with the
triangle with vertices [(0, 0), (1, 0), (0, 1)], though different choices of vertex numbering are possible.

1.3.1 Reference cell topology

A cell is composed of topological entities, that is to say vertices, edges, faces and so forth. The topology of the
cell is given by the connectivity of its entities, for example which vertices make up each edge. It is useful to define
some terms to describe the cell topology:

Definition 1.2 The dimension of a cell is the maximal dimension of the topological entities that make up the cell.

Definition 1.3 A topological entity of codimension 𝑛 is a topological entity of dimension 𝑑 − 𝑛 where 𝑑 is the
dimension of the cell.

Armed with these definitions we are able to define names for topological entities of various dimension and codi-
mension:

entity name dimension codimension
vertex 0
edge 1
face 2
facet 1
cell 0
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The cells can be polygons or polyhedra of any shape, however in this course we will restrict ourselves to intervals
and triangles. The only other two-dimensional cells frequently employed are quadrilaterals.

1.3.2 Reference cell entities

The topological entities of each dimension in a cell are distinguished by giving them unique numbers. We will
identify topological entities by an index pair (𝑑, 𝑖) where 𝑖 is the index of the entity within the set of 𝑑-dimensional
entities.

The particular choices of numbering we will use are shown in Fig. 1.1. The numbering is a matter of convention:
that adopted here is that edges share the number of the opposite vertex. The orientation of the edges is also shown,
this is always from the lower numbered vertex to the higher numbered one.

The ReferenceCell class stores the local topology of the reference cell. Read the source and ensure that you
understand the way in which this information is encoded.

(0, 0)

(0, 2)

(0, 1)

(2, 0)

(1, 0)

(1, 2)

(1, 1)(0, 0) (0, 1)(1, 0)

Fig. 1.1: Local numbering and orientation of the reference entities.

1.3.3 Python implementations of reference elements

The ReferenceCell class provides Python objects encoding the geometry and topology of the reference cell.
At this stage, the relevant information is the dimension of the reference cell and the list of vertices. The topol-
ogy will become important in the following chapters. The reference cells we will require for this course are the
ReferenceInterval and ReferenceTriangle.

1.4 Quadrature rules on reference elements

Having adopted a convention for the reference element, we can simply express quadrature rules as lists of quadrature
points with corresponding quadrature weights. For example Simpson’s rule becomes:

𝑤 =

[︂
1

6
,
2

3
,
1

6

]︂
𝑋 = [(0), (0.5), (1)] .

(1.5)

We choose to write the quadrature points as 1-tuples for consistency with the 𝑛-dimensional case, in which the
points will be 𝑛-tuples.

The lowest order quadrature rule on the reference triangle is a single point quadrature:

𝑤 =

[︂
1

2

]︂
𝑋 =

[︂(︂
1

3
,
1

3

)︂]︂ (1.6)

This rule has a degree of precision of 1.
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� Hint

The weights of a quadrature rule always sum to the volume of the reference element. Why is this?

1.5 Legendre-Gauß quadrature in one dimension

The finite element method will result in integrands of different polynomial degrees, so it is convenient if we have
access to quadrature rules of arbitrary degree on demand. In one dimension the Legendre-Gauß quadrature rules
are a family of rules of arbitrary precision which we can employ for this purpose. Helpfully, numpy provides
an implementation which we are able to adopt. The Legendre-Gauß quadrature rules are usually defined for the
interval [−1, 1] so we need to change coordinates in order to arrive at a quadrature rule for our reference interval:

𝑋𝑞 =
𝑋 ′

𝑞 + 1

2

𝑤𝑞 =
𝑤′

𝑞

2

(1.7)

where ({𝑋 ′
𝑞}, {𝑤′

𝑞}) is the quadrature rule on the interval [−1, 1] and ({𝑋𝑞}, {𝑤𝑞}) is the rule on the unit interval.

Legendre-Gauß quadrature on the interval is optimal in the sense that it uses the minimum possible number of
points for each degree of precision.

1.6 Extending Legendre-Gauß quadrature to two dimensions

We can form a unit square by taking the Cartesian product of two unit intervals: (0, 1)⊗ (0, 1). Similarly, we can
form a quadrature rule on a unit square by taking the product of two interval quadrature rules:

𝑋sq = {(𝑥𝑝, 𝑥𝑞) | 𝑥𝑝, 𝑥𝑞 ∈ 𝑋}
𝑤sq = {𝑤𝑝𝑤𝑞 | 𝑤𝑝, 𝑤𝑞 ∈ 𝑤}

(1.8)

where (𝑋,𝑤) is an interval quadrature rule. Furthermore, the degree of accuracy of (𝑋sq, 𝑤sq) will be the same
as that of the one-dimensional rule.

However, we need a quadrature rule for the unit triangle. We can achieve this by treating the triangle as a square
with a zero length edge. The Duffy transform maps the unit square to the unit triangle:

(𝑥tri, 𝑦tri) = (𝑥sq, 𝑦sq(1− 𝑥sq)) (1.9)

Fig. 1.2: The Duffy transform maps a square to a triangle by collapsing one side.

By composing the Duffy transform with (1.8) we can arrive at a quadrature rule for the triangle:

𝑋tri = {(𝑥𝑝, 𝑥𝑞(1− 𝑥𝑝)) | 𝑥𝑝 ∈ 𝑋ℎ, 𝑥𝑞 ∈ 𝑋𝑣}
𝑤tri = {𝑤𝑝𝑤𝑞(1− 𝑥𝑝) | 𝑤𝑝 ∈ 𝑤ℎ, 𝑤𝑞 ∈ 𝑤𝑣}

(1.10)
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where (𝑋𝑣, 𝑤𝑣) is a reference interval quadrature rule with degree of precision 𝑛 and (𝑋ℎ, 𝑤ℎ) is a reference
interval quadrature rule with degree of precision 𝑛+ 1. The combined quadrature rule (𝑋tri, 𝑤tri) will then be 𝑛.
The additional degree of precision required for (𝑋ℎ, 𝑤ℎ) is because the Duffy transform effectively increases the
polynomial degree of the integrand by one.

1.7 Implementing quadrature rules in Python

The fe_utils.quadrature module provides the QuadratureRule class which records quadrature points and
weights for a given ReferenceCell. The gauss_quadrature() function creates quadrature rules for a pre-
scribed degree of precision and reference cell.

Exercise 1.4 The integrate() method is left unimplemented. Using (1.1), implement this method.

A test script for your method is provided in the test directory as test_01_integrate.py. Run this script to test
your code:

py.test test/test_01_integrate.py

from the Bash command line. Make sure you commit your modifications and push them to your fork of the course
repository.

� Hint

You can implement integrate() in one line using a list comprehension and numpy.dot().

� Hint

Don’t forget to activate your Python venv!
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CHAPTER

TWO

CONSTRUCTING FINITE ELEMENTS

At the core of the finite element method is the representation of finite-dimensional function spaces over elements.
This concept was formalised by [Cia02]:

Definition 2.1 A finite element is a triple (𝐾,𝑃,𝑁) in which 𝐾 is a cell, 𝑃 is a space of functions 𝐾 → R𝑛 and
𝑁 , the set of nodes, is a basis for 𝑃 *, the dual space to 𝑃 .

Note that this definition includes a basis for 𝑃 *, but not a basis for 𝑃 . It turns out to be most convenient to specify
the set of nodes for an element, and then derive an appropriate basis for 𝑃 from that. In particular:

Definition 2.2 Let 𝑁 = {𝜑*𝑗} be a basis for 𝑃 *. A nodal basis, {𝜑𝑖} for 𝑃 is a basis for 𝑃 with the property that
𝜑*𝑗 (𝜑𝑖) = 𝛿𝑖𝑗 .

2.1 A worked example

To illustrate the construction of a nodal basis, let’s consider the linear polynomials on a triangle. We first need to
define our reference cell. The obvious choice is the triangle with vertices {(0, 0), (1, 0), (0, 1)}

Functions in this space have the form 𝑎+𝑏𝑥+𝑐𝑦. So the function space has three unknown parameters, and its basis
(and dual basis) will therefore have three members. In order to ensure the correct continuity between elements, the
dual basis we need to use is the evaluation of the function at each of the cell vertices. That is:

𝜑*0(𝑓) = 𝑓 ((0, 0))

𝜑*1(𝑓) = 𝑓 ((1, 0))

𝜑*2(𝑓) = 𝑓 ((0, 1))

(2.1)

We know that 𝜑𝑖((𝑥, 𝑦)) has the form 𝑎𝑖+𝑏𝑖𝑥+𝑐𝑖𝑦 so now we can use the definition of the nodal basis to determine
the unknown coefficients: ⎛⎝𝜑*0(𝜑𝑖)𝜑*1(𝜑𝑖)

𝜑*2(𝜑𝑖)

⎞⎠ =

⎛⎝𝛿𝑖,0𝛿𝑖,1
𝛿𝑖,2

⎞⎠ (2.2)

So for 𝜑0 we have:⎛⎝𝜑*0(𝜑0)𝜑*1(𝜑0)
𝜑*2(𝜑0)

⎞⎠ =

⎛⎝𝜑0((0, 0))𝜑0((1, 0))
𝜑0((0, 1))

⎞⎠ =

⎛⎝𝑎0 + 𝑏0(0) + 𝑐0(0)
𝑎0 + 𝑏0(1) + 𝑐0(0)
𝑎0 + 𝑏0(0) + 𝑐0(1)

⎞⎠ =

⎡⎣1 0 0
1 1 0
1 0 1

⎤⎦⎡⎣𝑎0𝑏0
𝑐0

⎤⎦ =

⎡⎣10
0

⎤⎦ (2.3)

Which has solution 𝜑0 = 1 − 𝑥 − 𝑦. We can write the equations for all the basis functions at once as a single
matrix equation: ⎡⎣1 0 0

1 1 0
1 0 1

⎤⎦⎡⎣𝑎0 𝑎1 𝑎2
𝑏0 𝑏1 𝑏2
𝑐0 𝑐1 𝑐2

⎤⎦ =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ (2.4)

By which we establish that the full basis is given by:

𝜑0 = 1− 𝑥− 𝑦

𝜑1 = 𝑥

𝜑2 = 𝑦

(2.5)
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2.2 Types of node

We have just encountered nodes given by the evaluation of the function at a given point. Other forms of functional
are also suitable for use as finite element nodes. Examples include the integral of the function over the cell or some
sub-entity and the evaluation of the gradient of the function at some point. For some vector-valued function spaces,
the nodes may be given by the evaluation of the components of the function normal or tangent to the boundary of
the cell at some point.

In this course we will only consider point evaluation nodes. The implementation of several other forms of node are
covered in [Kir04].

2.3 The Lagrange element nodes

The number of coefficients of a degree 𝑝 polynomial in 𝑑 dimensions is given by the combination
(︀
𝑝+𝑑
𝑑

)︀
. The

simplest set of nodes which we can employ is simply to place these nodes in a regular grid over the reference
cell. Given the classical relationship between binomial coefficients and Pascal’s triangle (and between trinomial
coefficients and Pascal’s pyramid), it is unsurprising that this produces the correct number of nodes.

The set of equally spaced points of degree 𝑝 on the triangle is:{︂(︂
𝑖

𝑝
,
𝑗

𝑝

)︂⃒⃒⃒⃒
0 ≤ 𝑖+ 𝑗 ≤ 𝑝

}︂
(2.6)

The finite elements with this set of nodes are called the equispaced Lagrange elements and are the most commonly
used elements for relatively low order computations.

While this is the simplest node ordering to construct, when we come to build finite element spaces over a whole
computational mesh in Section 4, it will be much more straightforward if the nodes are numbered in topological
order. That is to say, the lowest numbered nodes are those associated with the vertices, followed by those associated
with the edges and finally, in two dimensions, those associated with the cell. For reasons that will become apparent
when we consider the continuity of finite element spaces, the nodes associated with the edges need to be in edge
orientation order. That is to say, the node number increases as one moves along the edge in the direction of the
arrow. In two dimensions, the ordering of nodes in the cell interior is arbitrary.

Fig. 2.1: The numbering of nodes for the degree 1, 2, and 3 equispaced Lagrange elements on triangles. Black nodes
are associated with vertices, red nodes with edges and blue nodes with the cell (face). Note that the numbering of
nodes on edges follows the numbering of the edges in Fig. 1.1.

ò Note

At higher order the equispaced Lagrange basis is poorly conditioned and creates unwanted oscillations in the
solutions. However for this course Lagrange elements will be sufficient.

Exercise 2.3 Implement lagrange_points(). Make sure your algorithm also works for one-dimensional ele-
ments. Some basic tests for your code are to be found in test/test_02_lagrange_points.py. You can also
test your lagrange points on the triangle by running:
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plot_lagrange_points degree

Where degree is the degree of the points to plot.

2.4 Solving for basis functions

The matrix in (2.3) is a generalised Vandermonde1 matrix . Given a list of points (𝑥𝑖, 𝑦𝑖) ∈ R2, 0 ≤ 𝑖 < 𝑚 the
corresponding degree 𝑛 generalised Vandermonde matrix is given by:

V =

⎡⎢⎢⎢⎣
1 𝑥0 𝑦0 𝑥20 𝑥0𝑦0 𝑦20 . . . 𝑥𝑛0 𝑥𝑛−1

0 𝑦0 . . . 𝑥0𝑦
𝑛−1
0 𝑦𝑛0

1 𝑥1 𝑦1 𝑥21 𝑥1𝑦1 𝑦21 . . . 𝑥𝑛1 𝑥𝑛−1
1 𝑦1 . . . 𝑥1𝑦

𝑛−1
1 𝑦𝑛1

...
1 𝑥𝑚 𝑦𝑚 𝑥2𝑚 𝑥𝑚𝑦𝑚 𝑦2𝑚 . . . 𝑥𝑛𝑚 𝑥𝑛−1

𝑚 𝑦𝑚 . . . 𝑥𝑚𝑦
𝑛−1
𝑚 𝑦𝑛𝑚

⎤⎥⎥⎥⎦ (2.7)

If we construct the Vandermonde matrix for the nodes of a finite element, then the equation for the complete set of
basis function polynomial coefficients is:

VC = I (2.8)

where the 𝑗-th column of 𝐶 contains the polynomial coefficients of the basis function corresponding to the 𝑗-th
node. For (2.8) to be well-posed, there must be a number of nodes equal to the number of coefficients of a degree
𝑛 polynomial. If this is the case, then it follows immediately that:

C = V−1 (2.9)

The same process applies to the construction of basis functions for elements in one or three dimensions, except that
the Vandermonde matrix must be modified to exclude powers of 𝑦 (in one dimension) or to include powers of 𝑧.

ò Note

Here we employ a monomial basis to represent polynomial spaces: any polynomial is given as a linear sum of
monomials such as 𝑥, 𝑥𝑦 or 𝑥2. This basis becomes increasingly ill-conditioned at higher order, so it may be
advantageous to employ a different basis in the construction of the Vandermonde matrix. See [Kir04] for an
example.

Exercise 2.4 Use (2.7) to implement vandermonde_matrix(). Think carefully about how to loop over each row
to construct the correct powers of 𝑥 and 𝑦. For the purposes of this exercise you should ignore the grad argument.

Tests for this function are in test/test_03_vandermonde_matrix.py

� Hint

You can use numpy array operations to construct whole columns of the matrix at once.

1 A Vandermonde matrix is the one-dimensional case of the generalised Vandermonde matrix.
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2.5 Implementing finite elements in Python

The Ciarlet triple (𝐾,𝑃,𝑁) also provides a good abstraction for the implementation of software objects corre-
sponding to finite elements. In our case𝐾 will be a ReferenceCell. In this course we will only implement finite
element spaces consisting of complete polynomial spaces so we will specify 𝑃 by providing the maximum degree
of the polynomials in the space. Since we will only deal with point evaluation nodes, we can represent 𝑁 by a
series of points at which the evaluation should occur.

Exercise 2.5 Implement the rest of the FiniteElement __init__() method. You should construct a Vander-
monde matrix for the nodes and invert it to create the basis function coefs. Store these as self.basis_coefs.

Some basic tests of your implementation are in test/test_04_init_finite_element.py.

� Hint

The numpy.linalg.inv() function may be used to invert the matrix.

2.6 Implementing the Lagrange Elements

The FiniteElement class implements a general finite element object assuming we have provided the cell, poly-
nomial, degree and nodes. The LagrangeElement class is a subclass of FiniteElement which will implement
the particular case of the equispaced Lagrange elements.

Exercise 2.6 Implement the __init__()method of LagrangeElement. Use lagrange_points() to obtain the
nodes. For the purpose of this exercise, you may ignore the entity_nodes argument.

After you have implemented tabulate() in the next exercise, you can use plot_lagrange_basis_functions
to visualise your Lagrange basis functions.

2.7 Tabulating basis functions

A core operation in the finite element method is integrating expressions involving functions in finite element spaces.
This is usually accomplished using numerical quadrature. This means that we need to be able to evaluate the basis
functions at a set of quadrature points. The operation of evaluating a set of basis functions at a set of points is
called tabulation.

Recall that the coefficients of the basis functions are defined with respect to the monomial basis in (2.9). To tabulate
the basis functions at a particular set of points therefore requires that the monomial basis be evaluated at that set of
points. In other words, the Vandermonde matrix needs to be evaluated at the quadrature points. Suppose we have
a set of points {𝑋𝑖} and a set of basis functions {𝜑𝑗} with coefficents with respect to the monomial basis given by
the matrix 𝐶. Then the tabulation matrix is given by:

𝑇𝑖𝑗 = 𝜑𝑗(𝑋𝑖) =
∑︁
𝑏

𝑉 (𝑋𝑖)𝑏𝐶𝑏𝑗 = (𝑉 (𝑋:) · 𝐶)𝑖𝑗 (2.10)

Exercise 2.7 Implement tabulate(). You can use a Vandermonde matrix to evaluate the polynomial terms and
take the matrix product of this with the basis function coefficients. The method should have at most two executable
lines. For the purposes of this exercise, ignore the grad argument.

The test file test/test_05_tabulate.py checks that tabulating the nodes of a finite element produces the identity
matrix.
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2.8 Gradients of basis functions

A function 𝑓 defined over a single finite element with basis {𝜑𝑖} is represented by a weighted sum of that basis:

𝑓 =
∑︁
𝑖

𝑓𝑖𝜑𝑖 (2.11)

In order to be able to represent and solve PDEs, we will naturally also have terms incorporating derivatives. Since
the coefficients 𝑓𝑖 are spatially constant, derivative operators pass through to apply to the basis functions:

∇𝑓 =
∑︁
𝑖

𝑓𝑖∇𝜑𝑖 (2.12)

This means that we will need to be able to evaluate the gradient of the basis functions at quadrature points. Recall
once again that the basis functions are evaluated by multiplying the Vandermonde matrix evaluated at the relevant
points by the matrix of basis function coefficients. Hence:

∇𝜑(𝑋) = ∇ (𝑉 (𝑋) · 𝐶) = (∇𝑉 (𝑋)) · 𝐶 (2.13)

The last step follows because 𝐶 is not a function of 𝑋 , so it passes through ∇. The effect of this is that evaluating
the gradient of a function in a finite element field just requires the evaluation of the gradient of the Vandermonde
matrix.

Exercise 2.8 Extend vandermonde_matrix() so that setting grad to True produces a rank 3 generalised Van-
dermonde tensor whose indices represent points, monomial basis function, and gradient component respectively.
That is:

∇𝑉𝑖𝑗𝑘 =
𝜕𝑉𝑗(𝑋𝑖)

𝜕𝑥𝑘
(2.14)

In other words, each entry of 𝑉 is replaced by a vector of the gradient of that polynomial term. For example, the
entry 𝑥2𝑦3 would be replaced by the vector [2𝑥𝑦3, 3𝑥2𝑦2].

The test/test_06_vandermonde_matrix_grad.py file has tests of this extension. You should also ensure that
you still pass test/test_03_vandermonde_matrix.py.

� Hint

The transpose() method of numpy arrays enables generalised transposes swapping any dimensions.

� Hint

At least one of the natural ways of implementing this function results in a whole load of nan values in the
generalised Vandermonde matrix. In this case, you might find numpy.nan_to_num() useful.

Exercise 2.9 Extend tabulate() to pass the grad argument through to vandermonde_matrix(). Then gener-
alise the matrix product in tabulate() so that the result of this function (when grad is true) is a rank 3 tensor:

T𝑖𝑗𝑘 = ∇(𝜑𝑗(𝑋𝑖)) · e𝑘 (2.15)

where e0 . . . edim−1 is the coordinate basis on the reference cell.

The test/test_07_tabulate_grad.py script tests this extension. Once again, make sure you still pass test/
test_05_tabulate.py

� Hint

The numpy.einsum() function implements generalised tensor contractions using Einstein summation nota-
tion. For example:
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A = numpy.einsum("ijk,jl->ilk", T, C)

is equivalent to 𝐴𝑖𝑙𝑘 =
∑︀

𝑗 𝑇𝑖𝑗𝑘𝐶𝑗𝑙.

2.9 Interpolating functions to the finite element nodes

Recall once again that a function can be represented on a single finite element as:

𝑓 =
∑︁
𝑖

𝑓𝑖𝜑𝑖 (2.16)

Since {𝜑𝑖} is a nodal basis, it follows immediately that:

𝑓𝑖 = 𝜑*𝑖 (𝑓) (2.17)

where 𝜑*𝑖 is the node associated with the basis function 𝜑𝑖. Since we are only interested in nodes which are the
point evaluation of their function input, we know that:

𝑓𝑖 = 𝑓(𝑋𝑖) (2.18)

where 𝑋𝑖 is the point associated with the 𝑖-th node.

Exercise 2.10 Implement interpolate().

Once you have done this, you can use the script provided to plot functions of your choice interpolated onto any of
the finite elements you can make:

plot_interpolate_lagrange "sin(2*pi*x[0])" 2 5

� Hint

You can find help on the arguments to this function with:

plot_interpolate_lagrange -h
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CHAPTER

THREE

MESHES

When employing the finite element method, we represent the domain on which we wish to solve our PDE as a mesh.
In order to work with meshes, we need to have a somewhat more formal mathematical notion of a mesh. The mesh
concepts we will employ here are loosely based on those in [Log09], and are typical of mesh representations for
the finite element method.

3.1 Mesh entities

Like a cell, a mesh is composed of topological entities, such as vertices, edges, polygons and polyhedra. The
distinction is that a mesh is made of potentially many cells, and a commensurate number of lower-dimensional
entities.

Definition 3.1 The (topological) dimension of a mesh is the largest dimension among all of the topological entities
in a mesh.

In this course we will not consider meshes of manifolds immersed in higher dimensional spaces (for example the
surface of a sphere immersed in R3) so the topological dimension of the mesh will always match the geometric
dimension of space in which we are working, so we will simply refer to the dimension of the mesh.

The numbering of mesh entities is similar to that of cell entities, except that the indices range over all of the entities
of that dimension in the mesh. For example, entity (0, 10) is vertex number 10, and entity (1, 10) is edge 10. Fig.
3.1 shows an example mesh with the topological entities labelled.

(0,10)

(0,7) (0,5)

(0,3)

(0,4)

(0,2)

(0,1)

(0,0)

(0,8)

(0,9)

(0,11)

(0,6)

(2,1)

(2,12)

(2,10)

(2,7)

(2,9)

(2,4)

(2,6)

(2,5)

(2,0)

(2,2)
(1,0)

(1,1)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(1,8)

(1,9)

(1,10)

(2,3)

(1,11)

(1,12)

(1,13)

(1,14)

(1,15)

(1,16)

(1,17)
(1,18)

(2,11)

(1,19)

(1,20)

(1,21)

(1,22)

(2,8)
(1,23)

(1,24)

Fig. 3.1: A triangular mesh showing labelled topological entities: vertices (black), edges (red), and cells (blue).
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3.2 Adjacency

In order to implement the finite element method, we need to integrate functions over cells, which means knowing
which basis functions are nonzero in a given cell. For the function spaces used in the finite element method, these
basis functions will be the ones whose nodes lie on the topological entities adjacent to the cell. That is, the vertices,
edges and (in 3D) the faces making up the cell, as well as the cell itself. One of the roles of the mesh is therefore
to provide a lookup facility for the lower-dimensional mesh entities adjacent to a given cell.

Definition 3.2 Given a mesh 𝑀 , then for each dim(𝑀) ≥ 𝑑1 > 𝑑2 ≥ 0 the adjacency function Adj𝑑1,𝑑2
: N →

N𝑘 is the function such that:

Adj𝑑1,𝑑2
(𝑖) = (𝑖0, . . . 𝑖𝑘)

where (𝑑1, 𝑖) is a topological entity and (𝑑2, 𝑖0), . . . , (𝑑2, 𝑖𝑘) are the adjacent 𝑑2-dimensional topological entities
numbered in the corresponding reference cell order. If every cell in the mesh has the same topology then 𝑘 will be
fixed for each (𝑑1, 𝑑2) pair. The correspondence between the orientation of the entity (𝑑1, 𝑖) and the reference cell
of dimension 𝑑1 is established by specifying that the vertices are numbered in ascending order1. That is, for any
entity (𝑑1, 𝑖):

(𝑖0, . . . 𝑖𝑘) = Adj𝑑1,0(𝑖) =⇒ 𝑖0 < . . . < 𝑖𝑘

A consequence of this convention is that the global orientation of all the entities making up a cell also matches
their local orientation.

Example 3.3 In the mesh shown in Fig. 3.1 we have:

Adj2,0(3) = (1, 5, 8).

In other words, vertices 1, 5 and 8 are adjacent to cell 3. Similarly:

Adj2,1(3) = (11, 5, 9).

Edges 11, 5, and 9 are local edges 0, 1, and 2 of cell 3.

3.3 Mesh geometry

The features of meshes we have so far considered are purely topological: they deal with the adjacency relationships
between topological entities, but do not describe the locations of those entities in space. Provided we restrict our
attention to meshes in which the element edges are straight (ie not curved), we can represent the geometry of the
mesh by simply recording the coordinates of the vertices. The positions of the higher dimensional entities then just
interpolate the vertices of which they are composed. We will later observe that this is equivalent to representing
the geometry in a vector-valued piecewise linear finite element space.

3.4 A mesh implementation in Python

The Mesh class provides an implementation of mesh objects in 1 and 2 dimensions. Given the list of vertices
making up each cell, it constructs the rest of the adjacency function. It also records the coordinates of the vertices.

The UnitSquareMesh class creates a Mesh object corresponding to a regular triangular mesh of a unit square.
Similarly, the UnitIntervalMesh class performs the corresponding (rather trivial) function for a unit one dimen-
sional mesh.

You can observe the numbering of mesh entities in these meshes using the plot_mesh script. Run:

1 The numbering convention adopted here is very convenient, but only works for meshes composed of simplices (vertices, intervals, triangles
and tetrahedra). A more complex convention would be required to support quadrilateral meshes.
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plot_mesh -h

for usage instructions.
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FOUR

FUNCTION SPACES: ASSOCIATING DATA WITH MESHES

A finite element space over a mesh is constructed by associating a finite element with each cell of the mesh. We will
refer to the basis functions of this finite element space as global basis functions, while those of the finite element
itself we will refer to as local basis functions. We can establish the relationship between the finite element and each
cell of the mesh by associating the nodes (and therefore the local basis functions) of the finite element with the
topological entities of the mesh. This is a two stage process. First, we associate the nodes of the finite element with
the local topological entities of the reference cell. This is often referred to as local numbering. Then we associate
the correct number of degrees of freedom (i.e. number of basis functions) with each global mesh entity. This is
the global numbering.

4.1 Local numbering and continuity

Which nodes should be associated with which topological entities? The answer to this question depends on the de-
gree of continuity required between adjacent cells. The nodes associated with topological entites on the boundaries
of cells (the vertices in one dimension, the vertices and edges in two dimensions, and the vertices, edges and faces
in three dimensions) are shared between cells. The basis functions associated with nodes on the cell boundary will
therefore be continuous between the cells which share that boundary.

For the Lagrange element family, we require global 𝐶0 continuity. This implies that the basis functions are contin-
uous everywhere. This has the following implications for the association of basis functions with local topological
entites:

vertices
At the function vertices we can achieve continuity by requiring that there be a node associated with each
mesh vertex. The basis function associated with that node will therefore be continuous. Since we have a
nodal basis, all the other basis functions will vanish at the vertex so the global space will be continuous at
this point.

edges
Where the finite element space has at least 2 dimensions we need to ensure continuity along edges. The
restriction of a degree 𝑝 polynomial over a 𝑑-dimensional cell to an edge of that cell will be a one dimensional
degree 𝑝 polynomial. To fully specify this polynomial along an edge requires 𝑝 + 1 nodes. However there
will already be two nodes associated with the vertices of the edge, so 𝑝−1 additional nodes will be associated
with the edge.

faces
For three-dimensional (tetrahedral) elements, the basis functions must also be continuous across faces. This
requires that sufficient nodes lie on the face to fully specify a two dimensional degree 𝑝 polynomial. However
the vertices and edges of the face already have nodes associated with them, so the number of nodes required
to be associated with the face itself is actually the number required to represent a degree 𝑝 − 2 polynomial
in two dimensions given by the combination

(︀
𝑝−1
2

)︀
.

This pattern holds more generally: for a 𝐶0 function space, the number of nodes which must be associated with a
local topological entity of dimension 𝑑 is

(︀
𝑝−1
𝑑

)︀
.

Fig. 4.1 illustrates the association of nodes with reference entities for Lagrange elements on triangles.
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Fig. 4.1: Association of nodes with reference entities for the degree 1, 2, and 3 equispaced Lagrange elements on
triangles. Black nodes are associated with vertices, red nodes with edges and blue nodes with the cell (face). This
is the same figure as Fig. 2.1.

4.2 Implementing local numbering

Local numbering can be implemented by adding an additional data structure to the FiniteElement class. For
each local entity this must record the local nodes associated with that entity. This can be achieved using a dic-
tionary of dictionaries structure. For example employing the local numbering of nodes employed in Fig. 2.1, the
entity_node dictionary for the degree three equispaced Lagrange element on a triangle is given by:

entity_node = {0: {0: [0],
1: [1],
2: [2]},

1: {0: [3, 4],
1: [5, 6],
2: [7, 8]},

2: {0: [9]}}

Note that the order of the nodes in each list is important: it must always consistently reflect the orientation of the
relevant entity in order that all the cells which share that entity consistently interpret the nodes. In this case this
has been achieved by listing the nodes in order given by the direction of the orientation of each edge.

Exercise 4.1 Extend the __init__() method of LagrangeElement so that it passes the correct entity_node
dictionary to the FiniteElement it creates.

The test/test_08_entity_nodes.py script tests this functionality.

4.3 Global numbering

Given a mesh and a finite element, the global numbering task is to uniquely associate the appropriate number of
global node numbers with each global entity. One such numbering1 is to allocate global numbers in ascending
entity dimension order, and within each dimension in order of the index of each global topological entity. The
formula for the first global node associated with entity (𝑑, 𝑖) is then:

𝐺(𝑑, 𝑖) =

(︃∑︁
𝛿<𝑑

𝑁𝛿𝐸𝛿

)︃
+ 𝑖𝑁𝑑 (4.1)

where 𝑁𝑑 is the number of nodes which this finite element associates with a single entity of dimension 𝑑, and 𝐸𝑑

is the number of dimension 𝑑 entities in the mesh. The full list of nodes associated with entity (𝑑, 𝑖) is therefore:

[𝐺(𝑑, 𝑖), . . . , 𝐺(𝑑, 𝑖) +𝑁𝑑 − 1] (4.2)
1 Many correct global numberings are possible, that presented here is simple and correct, but not optimal from the perspective of the memory

layout of the resulting data.
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4.4 The cell-node map

The primary use to which we wish to put the finite element spaces we are constructing is, naturally, the solution of
finite element problems. The principle operation we will therefore need to support is integration over the mesh of
mathematical expressions involving functions in finite element spaces. This will be accomplished by integrating
over each cell in turn, and then summing over all cells. This means that a key operation we will need is to find the
nodes associated with a given cell.

It is usual in finite element software to explicitly store the map from cells to adjacent nodes as a two-dimensional
array with one row corresponding to each cell, and with columns corresponding to the local node numbers. The
entries in this map will have the following values:

𝑀 [𝑐, 𝑒(𝛿, 𝜖)] = [𝐺(𝛿, 𝑖), . . . , 𝐺(𝛿, 𝑖) +𝑁𝛿 − 1] ∀0 ≤ 𝛿 ≤ dim(𝑐),∀0 ≤ 𝜖 < �̂�𝛿 (4.3)

where:

𝑖 = Adjdim(𝑐),𝛿[𝑐, 𝜖], (4.4)

𝑒(𝛿, 𝜖) is the local entity-node list for this finite element for the (𝛿, 𝜖) local entity, Adj has the meaning given under
Python implementations of reference elements, �̂�𝛿 is the number of dimension 𝛿 entities in each cell, and𝐺 and𝑁
have the meanings given above. This algorithm requires a trivial extension to adjacency:

Adjdim(𝑐),dim(𝑐)[𝑐, 0] = 𝑐 (4.5)

� Hint

In (4.3), notice that for each value of 𝛿 and 𝜖, 𝑒(𝛿, 𝜖) is a vector of indices, so the equation sets the value of zero,
one, or more defined entries in row 𝑐 of 𝑀 for each 𝛿 and 𝜖.

4.5 Implementing function spaces in Python

As noted above, a finite element space associates a mesh and a finite element, and contains (in some form) a global
numbering of the nodes.

Exercise 4.2 Implement the __init__() method of fe_utils.function_spaces.FunctionSpace. The key
operation is to set cell_nodes using (4.3).

You can plot the numbering you have created with the plot_function_space_nodes script. As usual, run the
script passing the -h option to discover the required arguments.

� Hint

Many of the terms in (4.3) are implemented in the objects in fe_utils. For example:

• Adjdim(𝑐),𝛿 is implemented by the adjacency() method of the Mesh .

• You have 𝑒(𝛿, 𝜖) as entity_nodes. Note that in this case you need separate square brackets for each
index:
element.entity_nodes[delta][epsilon]

� Hint

cell_nodes needs to be integer-valued. If you choose to use numpy.zeros() to create a matrix which you
then populate with values, you need to explicitly specify that you want a matrix of integers. This can be
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achieved by passing the dtype argument to numpy.zeros(). For example numpy.zeros((nrows, ncols),
dtype=int).
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CHAPTER

FIVE

FUNCTIONS IN FINITE ELEMENT SPACES

Recall that the general form of a function in a finite element space is:

𝑓(𝑥) =
∑︁
𝑖

𝑓𝑖𝜑𝑖(𝑥) (5.1)

Where the 𝜑𝑖(𝑥) are now the global basis functions achieved by stitching together the local basis functions defined
by the finite element.

5.1 A python implementation of functions in finite element spaces

The Function class provides a simple implementation of function storage. The input is a FunctionSpace which
defines the mesh and finite element to be employed, to which the Function adds an array of degree of freedom
values, one for each node in the FunctionSpace.

5.2 Interpolating values into finite element spaces

Suppose we have a function 𝑔(𝑥) : R𝑛 → R which we wish to approximate as a function 𝑓(𝑥) in some finite
element space 𝑉 . In other words, we want to find the 𝑓𝑖 such that:∑︁

𝑖

𝑓𝑖𝜑𝑖(𝑥) ≈ 𝑔(𝑥) (5.2)

The simplest way to do this is to interpolate 𝑔(𝑥) onto 𝑉 . In other words, we evaluate:

𝑓𝑖 = 𝑛𝑖(𝑔(𝑥)) (5.3)

where 𝑛𝑖 is the node associated with 𝜑𝑖 as considered over the entire mesh (globally). Since we are only concerned
with point evaluation nodes, this is equivalent to:

𝑓𝑖 = 𝑔(𝑥𝑖) (5.4)

where 𝑥𝑖 is the coordinate vector of the point defining the node 𝑛𝑖. This looks straightforward, however the 𝑥𝑖
are the global node points, and so far we have only defined the node points in local coordinates on the reference
element.
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5.2.1 Changing coordinates between reference and physical space

We’ll refer to coordinates on the global mesh as being in physical space while those on the reference element are
in local space. We’ll use case to distinguish local and global objects, so local coordinates will be written as 𝑋
and global coordinates as 𝑥. The key observation is that within each cell, the global coordinates are the linear
interpolation of the global coordinate values at the cell vertices. In other words, if {Ψ𝑗} is the local basis for the
linear lagrange elements on the reference cell and �̂�𝑗 are the corresponding global vertex locations on a cell 𝑐 then:

𝑥 =
∑︁
𝑗

�̂�𝑗Ψ𝑗(𝑋) ∀𝑥 ∈ 𝑐. (5.5)

Remember that we know the location of the nodes in local coordinates, and we have the tabulate() method to
evaluate all the basis functions of an element at a known set of points. So if we write:

𝐴𝑖,𝑗 = Ψ𝑗(𝑋𝑖) (5.6)

where {𝑋𝑖} are the local node points of our finite element, then the corresponding global node points {𝑥𝑖} are
given by

𝑥 = 𝐴 · �̂� (5.7)

where �̂� is the (dim+1,dim) array whose rows are the current element vertex coordinates. Specifically, 𝑥 is the
(nodes,dim) array whose rows are the global coordinates of the nodes in the current element. We can then apply
𝑔() to each row of 𝑥 in turn and record the result as the Function value for that node.

� Hint

The observant reader will notice that this algorithm is inefficient because the function values at nodes on the
boundaries of elements are evaluated more than once. This can be avoided with a little tedious bookkeeping
but we will not concern ourselves with that here.

5.2.2 Looking up cell coordinates and values

In the previous section we used the vertex coordinates of a cell to find the node coordinates, and then we calculated
Function values at those points. The coordinates are stored in a single long list associated with the Mesh , and the
Function contains a single long list of values. We need to use indirect addressing to access these values. This is
best illustrated using some Python code.

Suppose f is a Function. For brevity, we write fs = f.function_space, the FunctionSpace associated with
f. Now, we first need a linear element and a corresponding FunctionSpace:

cg1 = fe_utils.LagrangeElement(fs.mesh.cell, 1)
cg1fs = fe_utils.FunctionSpace(fs.mesh, cg1)

Then the vertex indices of cell number c in the correct order for the linear Lagrange element are:

cg1fs.cell_nodes[c, :]

and therefore the set of coordinate vectors for the vertices of element c are:

fs.mesh.vertex_coords[cg1fs.cell_nodes[c, :], :]

That is, the cg1fs.cell_nodes array is used to look up the right vertex coordinates. By a similar process we can
access the values associated with the nodes of element c:

f.values[fs.cell_nodes[c, :]]
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5.2.3 A Python implementation of interpolation

Putting together the change of coordinates with the right indirect addressing, we can provide the Function class
with a interpolate() method which interpolates a user-provided function onto the Function.

Exercise 5.1 Read and understand the interpolate() method. Use plot_sin_function to investigate inter-
polating different functions onto finite element spaces at differering resolutions and polynomial degrees.

� Hint

There is no implementation work associated with this exercise, but the programming constructs used in
interpolate() will be needed when you implement integration.

5.3 Integration

We now come to one of the fundamental operations in the finite element method: integrating a Function over the
domain. The full finite element method actually requires the integration of expressions of unknown test and trial
functions, but we will start with the more straightforward case of integrating a single, known, Function over a
domain Ω: ∫︁

Ω

𝑓d𝑥 𝑓 ∈ 𝑉 (5.8)

where d𝑥 should be understood as being the volume measure with the correct dimension for the domain and 𝑉 is
some finite element space over Ω. We can express this integral as a sum of integrals over individual cells:∫︁

Ω

𝑓d𝑥 =
∑︁
𝑐∈Ω

∫︁
𝑐

𝑓d𝑥. (5.9)

So we have in fact reduced the integration problem to the problem of integrating 𝑓 over each cell. In a previous
part of the module we implemented quadrature rules which enable us to integrate over specified reference cells. If
we can express the integral over some arbitrary cell 𝑐 as an integral over a reference cell 𝑐0 then we are done. In
fact this simply requires us to employ the change of variables formula for integration:∫︁

𝑐

𝑓(𝑥)d𝑥 =

∫︁
𝑐0

𝑓(𝑋)|𝐽 |d𝑋 (5.10)

where |𝐽 | is the absolute value of the determinant of the Jacobian matrix. 𝐽 is given by:

𝐽𝛼𝛽 =
𝜕𝑥𝛼
𝜕𝑋𝛽

. (5.11)

� Hint

We will generally adopt the convention of using Greek letters to indicate indices in spatial dimensions, while
we will use Roman letters in the sequence 𝑖, 𝑗, . . . for basis function indices. We will continue to use 𝑞 for the
index over the quadrature points.

Evaluating (5.11) depends on having an expression for 𝑥 in terms of𝑋 . Fortunately, (5.5) is exactly this expression,
and applying the usual rule for differentiating functions in finite element spaces produces:

𝐽𝛼𝛽 =
∑︁
𝑗

(�̃�𝑗)𝛼∇𝛽Ψ𝑗(𝑋) (5.12)

where {Ψ𝑗} is once again the degree 1 Lagrange basis and {�̃�𝑗} are the coordinates of the corresponding vertices
of cell 𝑐. The presence of 𝑋 in (5.12) implies that the Jacobian varies spatially across the reference cell. However
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since {Ψ𝑗} is the degree 1 Lagrange basis, the gradients of the basis functions are constant over the cell and so it
does not matter at which point in the cell the Jacobian is evaluated. For example we might choose to evaluate the
Jacobian at the cell origin 𝑋 = 0.

� Hint

When using simplices with curved sides, and on all but the simplest quadrilateral or hexahedral meshes, the
change of coordinates will not be affine. In that case, to preserve full accuracy it will be necessary to compute
the Jacobian at every quadrature point. However, non-affine coordinate transforms are beyond the scope of this
course.

5.3.1 Expressing the function in the finite element basis

Let {Φ𝑖(𝑋)} be a local basis for 𝑉 on the reference element 𝑐0. Then our integral becomes:∫︁
𝑐

𝑓(𝑥)d𝑥 =

∫︁
𝑐0

∑︁
𝑖

𝐹 (𝑀(𝑐, 𝑖)) Φ𝑖(𝑋) |𝐽 |d𝑋 (5.13)

where 𝐹 is the vector of global coefficient values of 𝑓 , and 𝑀 is the cell node map.

5.3.2 Numerical quadrature

The actual evaluation of the integral will employ the quadrature rules we discussed in a previous section. Let
{𝑋𝑞}, {𝑤𝑞} be a quadrature rule of sufficient degree of precision that the quadrature is exact. Then:∫︁

𝑐

𝑓(𝑥)d𝑥 =
∑︁
𝑞

∑︁
𝑖

𝐹 (𝑀(𝑐, 𝑖)) Φ𝑖(𝑋𝑞) |𝐽 |𝑤𝑞 (5.14)

5.3.3 Implementing integration

Exercise 5.2 Use (5.12) to implement the jacobian() method of Mesh. test/test_09_jacobian.py is avail-
able for you to test your results.

� Hint

The ∇𝛽Ψ𝑗(𝑋) factor in (5.12) is the same for every cell in the mesh. You could make your implementation
more efficient by precalculating this term in the __init__() method of Mesh .

Exercise 5.3 Use (5.9) and (5.14) to implement integrate(). test/test_10_integrate_function.pymay
be used to test your implementation.

� Hint

Your method will need to:

1. Construct a suitable QuadratureRule.

2. tabulate() the basis functions at each quadrature point.

3. Visit each cell in turn.

4. Construct the jacobian() for that cell and take the absolute value of its determinant (numpy.absolute
and numpy.linalg.det() will be useful here).

5. Sum all of the arrays you have constructed over the correct indices to a contribution to the integral
(numpy.einsum() may be useful for this).
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� Hint

You might choose to read ahead before implementing integrate(), since the errornorm() function is very
similar and may provide a useful template for your work.
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SIX

ASSEMBLING AND SOLVING FINITE ELEMENT PROBLEMS

Having constructed functions in finite element spaces and integrated them over the domain, we now have the tools
in place to actually assemble and solve a simple finite element problem. To avoid having to explicitly deal with
boundary conditions, we choose in the first instance to solve a Helmholtz problem1, find 𝑢 in some finite element
space 𝑉 such that:

−∇2𝑢+ 𝑢 = 𝑓

∇𝑢 · n = 0 on Γ
(6.1)

where Γ is the domain boundary and n is the outward pointing normal to that boundary. 𝑓 is a known function
which, for simplicity, we will assume lies in 𝑉 . Next, we form the weak form of this equation by multiplying
by a test function in 𝑉 and integrating over the domain. We integrate the Laplacian term by parts. The problem
becomes, find 𝑢 ∈ 𝑉 such that:∫︁

Ω

∇𝑣 · ∇𝑢+ 𝑣𝑢d𝑥−
∫︁
Γ

𝑣∇𝑢 · nd𝑠⏟  ⏞  
=0

=

∫︁
Ω

𝑣𝑓 d𝑥 ∀𝑣 ∈ 𝑉
(6.2)

If we write {𝜑𝑖}𝑛−1
𝑖=0 for our basis for 𝑉 , and recall that it is sufficient to ensure that (6.2) is satisfied for each

function in the basis then the problem is now, find coefficients 𝑢𝑖 such that:∫︁
Ω

∑︁
𝑗

(∇𝜑𝑖 · ∇(𝑢𝑗𝜑𝑗) + 𝜑𝑖𝑢𝑗𝜑𝑗) d𝑥 =

∫︁
Ω

𝜑𝑖
∑︁
𝑘

𝑓𝑘𝜑𝑘 d𝑥 ∀ 0 ≤ 𝑖 < 𝑛 (6.3)

Note that since (6.2) is linear in 𝑣 =
∑︀

𝑖 𝑣𝑖𝜑𝑖 we are able to drop the coefficients 𝑣𝑖. Since the left hand side is
linear in the scalar coefficients 𝑢𝑗 , we can move them out of the integral:

∑︁
𝑗

(︂∫︁
Ω

∇𝜑𝑖 · ∇𝜑𝑗 + 𝜑𝑖𝜑𝑗 d𝑥𝑢𝑗

)︂
=

∫︁
Ω

𝜑𝑖
∑︁
𝑘

𝑓𝑘𝜑𝑘 d𝑥 ∀ 0 ≤ 𝑖 < 𝑛 (6.4)

We can write this as a matrix equation:

Au = f (6.5)

where:

A𝑖𝑗 =

∫︁
Ω

∇𝜑𝑖 · ∇𝜑𝑗 + 𝜑𝑖𝜑𝑗 d𝑥 (6.6)

u𝑗 = 𝑢𝑗 (6.7)

f𝑖 =

∫︁
Ω

𝜑𝑖
∑︁
𝑘

𝑓𝑘𝜑𝑘 d𝑥 (6.8)

1 Strictly speaking this is the positive definite Helmholtz problem. Changing the sign on 𝑢 produces the indefinite Helmholtz problem,
which is significantly harder to solve.
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6.1 Assembling the right hand side

The assembly of these integrals exploits the same decomposition property we exploited previously to integrate
functions in finite element spaces. For example, (6.8) can be rewritten as:

f𝑖 =
∑︁
𝑐

∫︁
𝑐

𝜑𝑖
∑︁
𝑘

𝑓𝑘𝜑𝑘 d𝑥 (6.9)

This has a practical impact once we realise that only a few basis functions are non-zero in each element. This
enables us to write an efficient algorithm for right hand side assembly. Assume that at the start of our algorithm:

f𝑖 = 0. (6.10)

Now for each cell 𝑐, we execute:

f𝑀(𝑐,̂𝑖)
+
=

∫︁
𝑐

Φ�̂�

⎛⎝∑︁
�̂�

𝑓𝑀(𝑐,�̂�) Φ�̂�

⎞⎠ |𝐽 |d𝑋 ∀0 ≤ �̂� < 𝑁 (6.11)

Where 𝑀 is the cell-node map for the finite element space 𝑉 , 𝑁 is the number of nodes per element in 𝑉 , and
{Φ�̂�}

𝑁−1

�̂�=0
are the local basis functions. In other words, we visit each cell and conduct the integral for each local

basis function, and add that integral to the total for the corresponding global basis function.

By choosing a suitable quadrature rule, {𝑋𝑞}, {𝑤𝑞}, we can write this as:

f𝑀(𝑐,̂𝑖)
+
=

⎛⎝∑︁
𝑞

Φ(𝑋𝑞)�̂�

⎛⎝∑︁
�̂�

𝑓𝑀(𝑐,�̂�) Φ(𝑋𝑞)�̂�

⎞⎠ 𝑤𝑞

⎞⎠ |𝐽 | ∀0 ≤ �̂� < 𝑁, ∀𝑐 (6.12)

6.2 Assembling the left hand side matrix

The left hand side matrix follows a similar pattern, however there are two new complications. First, we have two
unbound indices (𝑖 and 𝑗), and second, the integral involves derivatives. We will address the question of derivatives
first.

6.2.1 Pulling gradients back to the reference element

On element 𝑐, there is a straightforward relationship between the local and global bases:

𝜑𝑀(𝑐,𝑖)(𝑥) = Φ𝑖(𝑋) (6.13)

We can also, as we showed in Changing coordinates between reference and physical space, express the global
coordinate 𝑥 in terms of the local coordinate 𝑋 .

What about ∇𝜑? We can write the gradient operator in component form and apply (6.13):

𝜕𝜑𝑀(𝑐,𝑖)(𝑥)

𝜕𝑥𝛼
=
𝜕Φ𝑖(𝑋)

𝜕𝑥𝛼
∀ 0 ≤ 𝛼 < dim (6.14)

However, the expression on the right involves the gradient of a local basis function with respect to the global
coordinate variable 𝑥. We employ the chain rule to express this gradient with respect to the local coordinates, 𝑋:

𝜕𝜑𝑀(𝑐,𝑖)(𝑥)

𝜕𝑥𝛼
=

dim−1∑︁
𝛽=0

𝜕𝑋𝛽

𝜕𝑥𝛼

𝜕Φ𝑖(𝑋)

𝜕𝑋𝛽
∀ 0 ≤ 𝛼 < dim (6.15)

Using the definition of the Jacobian, and using ∇𝑥 and ∇𝑋 to indicate the global and local gradient operators
respectively, we can equivalently write this expression as:

∇𝑥𝜑𝑀(𝑐,𝑖)(𝑥) = 𝐽−T∇𝑋Φ𝑖(𝑋) (6.16)

where 𝐽−T = (𝐽−1)T is the transpose of the inverse of the cell Jacobian matrix.
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6.2.2 The assembly algorithm

We can start by transforming (6.6) to local coordinates (referred to as pulling back) and considering it in the
algorithmic form used for the right hand side in (6.9) to (6.12):

A𝑖𝑗 = 0.

A𝑀(𝑐,̂𝑖),𝑀(𝑐,�̂�)
+
=

∫︁
𝑐

(︁(︀
𝐽−𝑇∇𝑋Φ�̂�

)︀
·
(︁
𝐽−𝑇∇𝑋Φ�̂�

)︁
+Φ�̂�Φ�̂�

)︁
|𝐽 |d𝑋 ∀0 ≤ �̂�, �̂� < 𝑁, ∀𝑐

(6.17)

We now employ a suitable quadrature rule, {𝑋𝑞}, {𝑤𝑞}, to calculate the integral:

A𝑀(𝑐,̂𝑖),𝑀(𝑐,�̂�)
+
=
∑︁
𝑞

(︂(︀
𝐽−𝑇∇𝑋Φ�̂�(𝑋𝑞)

)︀
·
(︁
𝐽−𝑇∇𝑋Φ�̂�(𝑋𝑞)

)︁
+Φ�̂�(𝑋𝑞)Φ�̂�(𝑋𝑞)

)︂
|𝐽 |𝑤𝑞 ∀0 ≤ �̂�, �̂� < 𝑁, ∀𝑐

(6.18)

Some readers may find this easier to read using index notation over the geometric dimensions:

A𝑀(𝑐,̂𝑖),𝑀(𝑐,�̂�)
+
=
∑︁
𝑞

⎛⎝∑︁
𝛼𝛽𝛾

𝐽−1
𝛽𝛼 (∇𝑋Φ�̂�(𝑋𝑞))𝛽 𝐽

−1
𝛾𝛼

(︁
∇𝑋Φ�̂�(𝑋𝑞)

)︁
𝛾
+Φ�̂�(𝑋𝑞)Φ�̂�(𝑋𝑞)

⎞⎠ |𝐽 |𝑤𝑞 ∀0 ≤ �̂�, �̂� < 𝑁, ∀𝑐

(6.19)

6.2.3 A note on matrix insertion

For each cell 𝑐, the right hand sides of equations (6.18) and (6.19) have two free indices, �̂� and �̂�. The equation
therefore assembles a local 𝑁 ×𝑁 matrix corresponding to one integral for each test function, trial function pair
on the current element. This is then added to the global matrix at the row and column pairs given by the cell node
map 𝑀(𝑐, �̂�) and 𝑀(𝑐, �̂�).

Fig. 6.1: Computing integrals for each local test and trial function produces a local dense (in this case, 3 × 3)
matrix. The entries in this matrix are added to the corresponding global row and column positions in the global
matrix.

� Hint

One might naïvely expect that if nodes is the vector of global node numbers for the current cell, m is the matrix
of local integral values and A is the global matrix, then the Python code might look like:

A[nodes, nodes] += m # DON'T DO THIS!

Unfortunately, numpy interprets this as an instruction to insert a vector into the diagonal of A, and will complain
that the two-dimensional right hand side does not match the one-dimensional left hand side. Instead, one has
to employ the numpy.ix_() function:
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A[np.ix_(nodes, nodes)] += m # DO THIS!

No such problem exists for adding values into the global right hand side vector. If l is the global right hand
side vector and v is the vector of local right hand integrals, then the following will work just fine:

l[nodes] += v

6.2.4 Sparse matrices

Each row of the global matrix corresponds to a single global basis function. The number of non-zeros in this row is
equal to the number of other basis functions which are non-zero in the elements where the original basis function
is non-zero. The maximum number of non-zeros on a row may vary from a handful for a low degree finite element
to a few hundred for a fairly high degree element. The important point is that it is essentially independent of the
size of the mesh. This means that as the number of cells in the mesh increases, the proportion of the matrix entries
on each row which have the value zero increases.

For example, a degree 4 Lagrange finite element space defined on 64 × 64 unit square triangular mesh has about
66000 nodes. The full global matrix therefore has more that 4 billion entries and, at 8 bytes per matrix entry, will
consume around 35 gigabytes of memory! However, there are actually only around 23 nonzeros per row, so more
than 99.9% of the entries in the matrix are zeroes.

Instead of storing the complete matrix, sparse matrix formats store only those entries in the matrix which are
nonzero. They also have to store some metadata to describe where in the matrix the non-zero entries are stored.
There are various different sparse matrix formats available, which make different trade-offs between memory usage,
insertion speed, and the speed of different matrix operations. However, if we make the (conservative) assumption
that a sparse matrix takes 16 bytes to store each nonzero value, instead of 8 bytes, then we discover that in the
example above, we would use less than 25 megabytes to store the matrix. The time taken to solving the matrix
system will also be vastly reduced since operations on zeros are avoided.

� Hint

The scipy.sparse package provides convenient interfaces which enable Python code to employ a variety of
sparse matrix formats using essentially identical operations to the dense matrix case. The skeleton code already
contains commands to construct empty sparse matrices and to solve the resulting linear system. You may, if you
wish, experiment with choosing other sparse formats from scipy.sparse, but it is very strongly suggested
that you do not switch to a dense numpy array; unless, that is, you particularly enjoy running out of memory
on your computer!

6.3 The method of manufactured solutions

When the finite element method is employed to solve Helmholtz problems arising in science and engineering,
the value forcing function 𝑓 will come from the application data. However for the purpose of testing numerical
methods and software, it is exceptionally useful to be able to find values of 𝑓 such that an analytic solution to the
partial differential equation is known. It turns out that there is a straightforward algorithm for this process. This
algorithm is known as the method of manufactured solutions. It has but two steps:

1. Choose a function �̃� which satisfies the boundary conditions of the PDE.

2. Substitute �̃� into the left hand side of (6.1). Set 𝑓 equal to the result of this calculation, and now �̃� is a
solution to (6.1).

To illustrate this algorithm, suppose we wish to construct 𝑓 such that:

�̃� = cos(4𝜋𝑥0)𝑥
2
1(1− 𝑥1)

2 (6.20)
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is a solution to (6.1) defined on a domain Γ bounded by the unit square (a square with vertices at the points (0, 0),
(0, 1), (1, 0) and (1, 1)). It is simple to verify that �̃� satisfies the boundary conditions. We then note that:

−∇2�̃�+ �̃� =
(︀
(16𝜋2 + 1)(𝑥1 − 1)2𝑥21 − 12𝑥21 + 12𝑥1 − 2

)︀
cos(4𝜋𝑥0) (6.21)

If we choose:

𝑓 =
(︀
(16𝜋2 + 1)(𝑥1 − 1)2𝑥21 − 12𝑥21 + 12𝑥1 − 2

)︀
cos(4𝜋𝑥0) (6.22)

then �̃� is a solution to (6.1).

6.4 Errors and convergence

6.4.1 The 𝐿2 error

When studying finite element methods we are freqently concerned with convergence in the 𝐿2 norm. That is to say,
if 𝑉 and 𝑊 are finite element spaces defined over the same mesh, and 𝑓 ∈ 𝑉, 𝑔 ∈𝑊 then we need to calculate:

√︃∫︁
Ω

(𝑓 − 𝑔)2d𝑥 =

⎯⎸⎸⎸⎷∑︁
𝑐

∫︁
𝑐

⎛⎝(︃∑︁
𝑖

𝑓𝑀𝑉 (𝑐,𝑖)Φ𝑖

)︃
−

⎛⎝∑︁
𝑗

𝑔𝑀𝑊 (𝑐,𝑗)Ψ𝑗

⎞⎠⎞⎠2

|𝐽 |d𝑋 (6.23)

where 𝑀𝑉 is the cell-node map for the space 𝑉 and 𝑀𝑊 is the cell-node map for the space 𝑊 . Likewise {Φ𝑖} is
the local basis for 𝑉 and {Ψ𝑗} is the local basis for 𝑊 .

A complete quadrature rule for this integral will, due to the square in the integrand, require a degree of precision
equal to twice the greater of the polynomial degrees of 𝑉 and 𝑊 .

6.4.2 Numerically estimating convergence rates

Using the approximation results from the theory part of the course, we know that the error term in the finite element
solution of the Helmholtz equation is expected to have the form 𝒪(ℎ𝑝+1) where ℎ is the mesh spacing and 𝑝 is the
polynomial degree of the finite element space employed. That is to say if �̃� is the exact solution to our PDE and
𝑢ℎ is the solution to our finite element problem, then for sufficiently small ℎ:

‖𝑢ℎ − �̃�‖𝐿2 < 𝑐ℎ𝑝+1 (6.24)

for some 𝑐 > 0 not dependent on ℎ. Indeed, for sufficiently small ℎ, there is a 𝑐 such that we can write:

‖𝑢ℎ − �̃�‖𝐿2 ≈ 𝑐ℎ𝑝+1 (6.25)

Suppose we solve the finite element problem for two different (fine) mesh spacings, ℎ1 and ℎ2. Then we have:

‖𝑢ℎ1
− �̃�‖𝐿2 ≈ 𝑐ℎ𝑝+1

1

‖𝑢ℎ2 − �̃�‖𝐿2 ≈ 𝑐ℎ𝑝+1
2

(6.26)

or equivalently:

‖𝑢ℎ1
− �̃�‖𝐿2

‖𝑢ℎ2 − �̃�‖𝐿2

≈
(︂
ℎ1
ℎ2

)︂𝑝+1

(6.27)

By taking logarithms and rearranging this equation, we can produce a formula which, given the analytic solution
and two numerical solutions, produces an estimate of the rate of convergence:

𝑞 =

ln

(︂
‖𝑢ℎ1

− �̃�‖𝐿2

‖𝑢ℎ2 − �̃�‖𝐿2

)︂
ln

(︂
ℎ1
ℎ2

)︂ (6.28)
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6.5 Implementing finite element problems

Exercise 6.1 fe_utils/solvers/helmholtz.py contains a partial implementation of the finite element method
to solve (6.2) with 𝑓 chosen as in (6.22). Your task is to implement the assemble() function using (6.12), and
(6.18) or (6.19). The comments in the assemble() function provide some guidance as to the steps involved. You
may also wish to consult the errornorm() function as a guide to the structure of the code required.

Run:

python fe_utils/solvers/helmholtz.py --help

for guidance on using the script to view the solution, the analytic solution and the error in your solution. In
addition, test/test_11_helmholtz_convergence.py contains tests that the helmholtz solver converges at the
correct rate for degree 1, 2 and 3 polynomials.

. Warning

test/test_12_helmholtz_convergence.py may take many seconds or even a couple of minutes to run,
as it has to solve on some rather fine meshes in order to check convergence.
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SEVEN

DIRICHLET BOUNDARY CONDITIONS

The Helmholtz problem we solved in the previous part was chosen to have homogeneous Neumann or natural
boundary conditions, which can be implemented simply by cancelling the zero surface integral. We can now
instead consider the case of Dirichlet, or essential boundary conditions. Instead of the Helmholtz problem we
solved before, let us now specify a Poisson problem with homogeneous Dirichlet conditions, find 𝑢 in some finite
element space 𝑉 such that:

−∇2𝑢 = 𝑓

𝑢 = 0 on Γ
(7.1)

In order to implement the Dirichlet conditions, we need to decompose 𝑉 into two parts:

𝑉 = 𝑉0 ⊕ 𝑉Γ (7.2)

where 𝑉Γ is the space spanned by those functions in the basis of 𝑉 which are non-zero on Γ, and 𝑉0 is the space
spanned by the remaining basis functions (i.e. those basis functions which vanish on Γ). It is a direct consequence
of the nodal nature of the basis that the basis functions for 𝑉Γ are those corresponding to the nodes on Γ while the
basis for 𝑉0 is composed of all the other functions.

We now write the weak form of (7.1), find 𝑢 = 𝑢0 + 𝑢Γ with 𝑢0 ∈ 𝑉0 and 𝑢Γ ∈ 𝑉Γ such that:∫︁
Ω

∇𝑣0 · ∇(𝑢0 + 𝑢Γ) d𝑥−
∫︁
Γ

𝑣0∇(𝑢0 + 𝑢Γ) · nd𝑠⏟  ⏞  
=0

=

∫︁
Ω

𝑣0 𝑓 d𝑥 ∀𝑣0 ∈ 𝑉0

𝑢Γ = 0 on Γ

(7.3)

There are a number of features of this equation which require some explanation:

1. We only test with functions from 𝑉0. This is because it is only necessary that the differential equation is
satisfied on the interior of the domain: on the boundary of the domain we need only satisfy the boundary
conditions.

2. The surface integral now cancels because 𝑣0 is guaranteed to be zero everywhere on the boundary.

3. The 𝑢Γ definition actually implies that 𝑢Γ = 0 everywhere, since all of the nodes in 𝑉Γ lie on the boundary.

This means that the weak form is actually:∫︁
Ω

∇𝑣0 · ∇𝑢d𝑥 =

∫︁
Ω

𝑣0 𝑓 d𝑥 ∀𝑣0 ∈ 𝑉0

𝑢Γ = 0

(7.4)
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7.1 An algorithm for homogeneous Dirichlet conditions

The implementation of homogeneous Dirichlet conditions is actually rather straightforward.

1. The system is assembled completely ignoring the Dirichlet conditions. This results in a global matrix and
vector which are correct on the rows corresponding to test functions in 𝑉0, but incorrect on the 𝑉Γ rows.

2. The global vector rows corresponding to boundary nodes are set to 0.

3. The global matrix rows corresponding to boundary nodes are set to 0.

4. The diagonal entry on each matrix row corresponding to a boundary node is set to 1.

This has the effect of replacing the incorrect boundary rows of the system with the equation 𝑢𝑖 = 0 for all boundary
node numbers 𝑖.

� Hint

This algorithm has the unfortunate side effect of making the global matrix non-symmetric. If a symmetric
matrix is required (for example in order to use a symmetric solver), then forward substition can be used to zero
the boundary columns in the matrix, but that is beyond the scope of this module.

7.2 Implementing boundary conditions

Let:

𝑓 =
(︀
16𝜋2(𝑥1 − 1)2𝑥21 − 2(𝑥1 − 1)2 − 8(𝑥1 − 1)𝑥1 − 2𝑥21

)︀
sin(4𝜋𝑥0)

With this definition, (7.4) has solution:

𝑢 = sin(4𝜋𝑥0)(𝑥1 − 1)2𝑥21

Exercise 7.1 fe_utils/solvers/poisson.py contains a partial implementation of this problem. You need
to implement the assemble() function. You should base your implementation on your fe_utils/solvers/
helmholtz.py but take into account the difference in the equation, and the boundary conditions. The fe_utils.
solvers.poisson.boundary_nodes() function in fe_utils/solvers/poisson.py is likely to be helpful in
implementing the boundary conditions. As before, run:

python fe_utils/solvers/poisson.py --help

for instructions (they are the same as for fe_utils/solvers/helmholtz.py). Similarly, test/
test_12_poisson_convergence.py contains convergence tests for this problem.

7.3 Inhomogeneous Dirichlet conditions

The algorithm described here can be extended to inhomogeneous systems by setting the entries in the global vector
to the value of the boundary condition at the corresponding boundary node. This additional step is required for the
mastery exercise, but will be explained in more detail in the next section.
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EIGHT

NONLINEAR PROBLEMS

The finite element method may also be employed to numerically solve nonlinear PDEs. In order to do this, we
can apply the classical technique for solving nonlinear systems: we employ an iterative scheme such as Newton’s
method to create a sequence of linear problems whose solutions converge to the correct solution to the nonlinear
problem.

. Warning

This chapter formed the content of the mastery material in some years, but does not currently do so. It is
presented for reference only.

8.1 A model problem

As a simple case of a non-linear PDE, we can consider a steady non-linear diffusion equation. This is similar to
the Poisson problem, except that the diffusion rate now depends on the value of the solution:

−∇ · ((𝑢+ 1)∇𝑢) = 𝑔

𝑢 = 𝑏 on Γ
(8.1)

where 𝑔 and 𝑏 are given functions defined over Ω and Γ respectively.

We can create the weak form of (8.1) by integrating by parts and taking the boundary conditions into account. The
problem becomes, find 𝑢 ∈ 𝑉 such that:∫︁

Ω

∇𝑣0 · (𝑢+ 1)∇𝑢d𝑥 =

∫︁
Ω

𝑣0𝑔 d𝑥 ∀𝑣0 ∈ 𝑉0

𝑢Γ = 𝑏.

(8.2)

Once more, 𝑉0 is the subspace of 𝑉 spanned by basis functions which vanish on the boundary, 𝑉 = 𝑉0 ⊕ 𝑉Γ, and
𝑢 = 𝑢0 + 𝑢Γ with 𝑢0 ∈ 𝑉0 and 𝑢Γ ∈ 𝑉Γ. This is corresponds directly with the weak form of the Poisson equation
we already met. However, (8.2) is still nonlinear in 𝑢 so we cannot simply substitute 𝑢 = 𝑢𝑖𝜑𝑖 in order to obtain a
linear matrix system to solve.

8.2 Residual form

The general weak form of a non-linear problem is, find 𝑢 ∈ 𝑉 such that:

𝑓(𝑢; 𝑣) = 0 ∀𝑣 ∈ 𝑉 (8.3)

The use of a semicolon is a common convention to indicate that 𝑓 is assumed to be linear in the arguments after
the semicolon, but might be nonlinear in the arguments before the semicolon. In this case, we observe that 𝑓 may
be nonlinear in 𝑢 but is (by construction) linear in 𝑣.
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The function 𝑓 is called the residual of the nonlinear system. In essence, 𝑓(𝑢; 𝑣) = 0 ∀𝑣 ∈ 𝑉 if and only if 𝑢 is a
weak solution to the PDE. Since the residual is linear in 𝑣, it suffices to define the residual for each 𝜑𝑖 in the basis
of 𝑉 . For 𝜑𝑖 ∈ 𝑉0, the residual is just the weak form of the equation, but what do we do for the boundary? The
simple answer is that we need a linear functional which is zero if the boundary condition is satisfied at this test
function, and nonzero otherwise. The simplest example of such a functional is:

𝑓(𝑢;𝜑𝑖) = 𝜑*𝑖 (𝑢)− 𝜑*𝑖 (𝑏) (8.4)

where 𝜑*𝑖 is the node associated with basis function 𝜑𝑖. For point evaluation nodes, 𝜑*𝑖 (𝑢) is the value of the
proposed solution at node point 𝑖 and 𝜑*𝑖 (𝑏) is just the boundary condition evaluated at that same point.

So for our model problem, we now have a full statement of the residual in terms of a basis function 𝜑𝑖:

𝑓(𝑢;𝜑𝑖) =

⎧⎨⎩
∫︁
Ω

∇𝜑𝑖 · ((𝑢+ 1)∇𝑢)− 𝜑𝑖𝑔 d𝑥 𝜑𝑖 ∈ 𝑉0

𝜑*𝑖 (𝑢)− 𝜑*𝑖 (𝑏) 𝜑𝑖 ∈ 𝑉Γ

(8.5)

� Hint

Evaluating the residual requires that the boundary condition be evaluated at the boundary nodes. A simple (if
slightly inefficient) way to achieve this is to interpolate the boundary condition onto a function �̂� ∈ 𝑉 .

8.3 Linearisation and Gâteaux Derivatives

Having stated our PDE in residual form, we now need to linearise the problem and thereby employ a technique
such as Newton’s method. In order to linearise the residual, we need to differentiate it with respect to 𝑢. Since 𝑢
is not a scalar real variable, but is instead a function in 𝑉 , the appropriate form of differentiation is the Gâteaux
Derivative, given by:

𝐽(𝑢; 𝑣, �̂�) = lim
𝜖→0

𝑓(𝑢+ 𝜖�̂�; 𝑣)− 𝑓(𝑢; 𝑣)

𝜖
. (8.6)

Here, the new argument �̂� ∈ 𝑉 indicates the “direction” in which the derivative is to be taken. Let’s work through
the Gâteaux Derivative for the residual of our model problem. Assume first that 𝑣 ∈ 𝑉0. Then:

𝐽(𝑢; 𝑣, �̂�) = lim
𝜖→0

∫︁
Ω

∇𝑣 · ((𝑢+ 𝜖�̂�+ 1)∇(𝑢+ 𝜖�̂�))− 𝑣𝑔 d𝑥−
∫︁
Ω

∇𝑣 · ((𝑢+ 1)∇𝑢)− 𝑣𝑔 d𝑥

𝜖

= lim
𝜖→0

∫︁
Ω

∇𝑣 · (𝜖�̂�∇𝑢+ (𝑢+ 1)∇(𝜖�̂�) + 𝜖�̂�∇(𝜖�̂�)) d𝑥

𝜖

=

∫︁
Ω

∇𝑣 · (�̂�∇𝑢+ (𝑢+ 1)∇�̂�) d𝑥.

(8.7)

Note that, as expected, 𝐽 is linear in �̂�.

Next, we can work out the boundary case by assuming 𝑣 = 𝜑𝑖, one of the basis functions of 𝑉Γ:

𝐽(𝑢;𝜑𝑖, �̂�) = lim
𝜖→0

𝜑*𝑖 (𝑢+ 𝜖�̂�)− 𝜑*𝑖 (𝑏)− (𝜑*𝑖 (𝑢)− 𝜑*𝑖 (𝑏))

𝜖

= 𝜑*𝑖 (�̂�) since 𝜑*𝑖 (·) is linear.
(8.8)

Once again, we can observe that 𝐽 is linear in �̂�. Indeed, if we choose �̂� = 𝜑𝑗 for some 𝜑𝑗 in the basis if 𝑉 then
the definition of a nodal basis gives us:

𝐽(𝑢;𝜑𝑖, 𝜑𝑗) = 𝛿𝑖𝑗 (8.9)
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8.4 A Taylor expansion and Newton’s method

Since we now have the derivative of the residual with respect to a perturbation to the prospective solution 𝑢, we
can write the first terms of a Taylor series approximation for the value of the residual at a perturbed solution 𝑢+ �̂�:

𝑓(𝑢+ �̂�; 𝑣) = 𝑓(𝑢; 𝑣) + 𝐽(𝑢; 𝑣, �̂�) + . . . ∀𝑣 ∈ 𝑉. (8.10)

Now, just as in the scalar case, Newton’s method consists of approximating the function (the residual) by the first
two terms and solving for the update that will set these terms to zero. In other words:

𝑢𝑛+1 = 𝑢𝑛 + �̂� (8.11)

where �̂� ∈ 𝑉 is the solution to:

𝐽(𝑢𝑛; 𝑣, �̂�) = −𝑓(𝑢𝑛; 𝑣) ∀𝑣 ∈ 𝑉. (8.12)

In fact, (8.12) is simply a linear finite element problem! To make this explicit, we can expand 𝑣 and �̂� in terms of
basis functions {𝜑𝑖}𝑛−1

𝑖=0 ∈ 𝑉 such that 𝑣 =
∑︀

𝑖 𝑣𝑖𝜑𝑖 and �̂� =
∑︀

𝑗 �̂�𝑗𝜑𝑗 . We note, as previously, that we we can
drop the coefficients 𝑣𝑖 giving:∑︁

𝑗

𝐽(𝑢𝑛;𝜑𝑖, 𝜑𝑗)�̂�𝑗 = −𝑓(𝑢𝑛;𝜑𝑖) ∀ 0 ≤ 𝑖 < 𝑛. (8.13)

For our nonlinear diffusion problem, the matrix 𝐽 is given by:

𝐽𝑖𝑗 = 𝐽(𝑢𝑛;𝜑𝑖, 𝜑𝑗) =

⎧⎨⎩
∫︁
Ω

∇𝜑𝑖 · (𝜑𝑗∇𝑢𝑛 + (𝑢𝑛 + 1)∇𝜑𝑗) d𝑥 𝜑𝑖 ∈ 𝑉0

𝛿𝑖𝑗 𝜑𝑖 ∈ 𝑉Γ,
(8.14)

and the right hand side vector 𝑓 is given by (8.5). This matrix, 𝐽 , is termed the Jacobian matrix of 𝑓 .

8.4.1 Stopping criteria for Newton’s method

Since Newton’s method is an iterative algorithm, it creates a (hopefully convergent) sequence of approximations to
the correct solution to the original nonlinear problem. How do we know when to accept the solution and terminate
the algorithm?

The answer is that the update, �̂� which is calculated at each step of Newton’s method is itself an approximation
to the error in the solution. It is therefore appropriate to stop Newton’s method when this error estimate becomes
sufficiently small in the 𝐿2 norm.

The observant reader will observe that �̂� is in fact an estimate of the error in the previous step. This is indeed true:
the Newton step is both an estimate of the previous error and a correction to that error. However, having calculated
the error estimate, it is utterly unreasonable to not apply the corresponding correction.

ò Note

Note!

Another commonly employed stopping mechanism is to consider the size of the residual 𝑓 . However, the
residual is not actually a function in 𝑉 , but is actually a linear operator in 𝑉 *. Common practice would be to
identify 𝑓 with a function in 𝑉 by simply taking the function whose coefficients match those of 𝑓 . The 𝐿2 or
𝑙2 norm is then taken of this function and this value is used to determine when convergence has occured.

This approach effectively assumes that the Riesz map on 𝑉 is the trivial operator which identifies the basis
function coefficients. This would be legitimate were the inner product on 𝑉 the 𝑙2 dot product. However, since
the inner product on 𝑉 is defined by an integral, the mesh resolution is effectively encoded into 𝑓 . This means
that this approach produces convergence rates which depend on the level of mesh refinement.
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Avoiding this mesh dependency requires the evaluation of an operator norm or, equivalently, the solution of
a linear system in order to find the Riesz representer of 𝑓 in 𝑉 . However, since the error-estimator approach
given above is both an actual estimate of the error in the solution, and requires no additional linear solves, it
should be regarded as a preferable approach. For a full treatment of Newton methods, see [Deu11].

8.4.2 Stopping threshold values

What, then, qualifies as a sufficiently small value of our error estimate? There are two usual approaches:

relative tolerance
Convergence is deemed to occur when the estimate becomes sufficiently small compared with the first error
estimate calculated. This is generally the more defensible approach since it takes into account the overall
scale of the solution. 10−6 would be a reasonably common relative tolerance.

absolute tolerance
Computers employ finite precision arithmetic, so there is a limit to the accuracy which can ever be achieved.
This is a difficult value to estimate, since it depends on the number and nature of operations undertaken in
the algorithm. A common approach is to set this to a very small value (e.g. 10−50) initially, in order to
attempt to ensure that the relative tolerance threshold is hit. Only if it becomes apparent that the problem
being solved is in a regime for which machine precision is a problem is a higher absolute tolerance set.

It is important to realise that both of these criteria involve making essentially arbitrary judgements about the scale
of error which is tolerable. There is also a clear trade-off between the level of error tolerated and the cost of
performing a large number of Newton steps. For realistic problems, it is therefore frequently expedient and/or
necessary to tune the convergence criteria to the particular case.

In making these judgements, it is also important to remember that the error in the Newton solver is just one of the
many sources of error in a calculation. It is pointless to expend computational effort in an attempt to drive the level
of error in this component of the solver to a level which will be swamped by a larger error occurring somewhere
else in the process.

8.4.3 Failure modes

Just as with the Newton method for scalar problems, Newton iteration is not guaranteed to converge for all nonlinear
problems or for all initial guesses. If Newton’s method fails to converge, then the algorithm presented so far
constitutes an infinite loop. It is therefore necessary to define some circumstances in which the algorithm should
terminate having failed to find a solution. Two such circumstances are commonly employed:

maximum iterations
It is a reasonable heuristic that Newton’s method has failed if it takes a very large number of iterations. What
constitutes “too many” is once again a somewhat arbitrary judgement, although if the approach takes many
tens of iterations this should always be cause for reconsideration!

diverged error estimate
Newton’s method is not guaranteed to produce a sequence of iterations which monotonically decrease the
error, however if the error estimate has increased to, say, hundreds or thousands of times its initial value, this
would once again be grounds for the algorithm to fail.

Note that these failure modes are heuristic: having the algorithm terminate for these reasons is really an instruction
to the user to think again about the problem, the solver, and the initial guess.
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8.5 Implementing a nonlinear problem

ò Note

This problem is intentionally stated in more general terms than the previous ones. It is your responsibility to
decide on a code structure, to derive a method of manufactured solutions answer, and to create the convergence
tests which demonstrate that your solution is correct.

. Warning

This problem is not currently an assessable part of the module at Imperial College. It is presented here for
reference.

Exercise 8.1 The 𝑝-laplacian is a generalisation of the laplacian from a second derivative to an arbitrary deriva-
tive. It is nonlinear for 𝑝 ̸= 2.

Implement solve_mastery() so that it solves the following problem using degree 1 Lagrange elements over the
unit square domain:

−∇ ·
(︀
|∇𝑢|𝑝−2∇𝑢

)︀
= 𝑔

𝑢 = 𝑏 on Γ

𝑝 = 4

(8.15)

Select the solution 𝑢 = 𝑒𝑥𝑦 and compute the required forcing function 𝑔 so that your solution solves the equations.
Make sure your boundary condition function 𝑏 is consistent with your chosen solution!

For this problem, it is not possible to use the zero function as an initial guess for Newton’s method. A much better
choice is to treat the 2-laplacian as an approximation to the 4-laplacian, and therefore to solve Poisson’s equation
first to obtain a good initial guess for the 4-laplacian problem.

Your submitted answer will consist of:

1. A written component containing your derivation of:

a. The weak form of (8.15); and

b. the Jacobian; and

c. the forcing term implied by the specified manufactured solution; and

d. an explanation of why the zero function cannot be used as an initial guess for the solution.

A neatly hand-written or a typed submission are equally acceptable.

2. The code to implement the solution. This should be in fe_utils.solvers.mastery.py in your imple-
mentation. A convergence test for your code is provided in test/test_12_mastery_convergence.py.

The submission of your mastery exercise, and indeed the entire implementation exercise will be on Black-
board. You will submit a PDF containing the derivations above, and the git sha1 for the commit you would
like to have marked.

� Hint

It is an exceptionally useful aid to debugging to have your Newton iteration print out the value of the error
norm and the iteration number for each iteration. If you wish to see the printed output while running the test,
you can pass the -s option to py.test.
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� Hint

You could parametrise your code by 𝑝. By setting 𝑝 = 2, you reduce your problem to the linear case. You
can use the linear case to test your code initially, before setting 𝑝 = 4 for the actual exercise. Note that, in
the linear case, Newton’s method will converge in exactly one iteration (although your algorithm will have to
actually calculate two steps in order to know that convergence has occurred).
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CHAPTER

NINE

MIXED PROBLEMS

ò Note

This section is the mastery exercise for this module. This exercise is explicitly intended to test whether you can
bring together what has been learned in the rest of the module in order to go beyond what has been covered in
lectures and labs.

This exercise is not a part of the third year version of this module.

As an example of a mixed problem, let’s take the Stokes problem presented in Section 6 of the analysis part of the
course. The weak form of the Stokes problem presented in Definition 6.1 is find (𝑢, 𝑝) ∈ 𝑉 ×𝑄 such that:

𝑎(𝑢, 𝑣) + 𝑏(𝑣, 𝑝) =

∫︁
Ω

𝑓 · 𝑣 d𝑥,

𝑏(𝑢, 𝑞) = 0, ∀(𝑣, 𝑞) ∈ 𝑉 ×𝑄,

(9.1)

where

𝑎(𝑢, 𝑣) = 𝜇

∫︁
Ω

𝜖(𝑢) : 𝜖(𝑣) d𝑥,

𝑏(𝑣, 𝑞) =

∫︁
Ω

𝑞∇ · 𝑣 d𝑥,

𝑉 = (𝐻1(Ω))𝑑,

𝑄 = �̊�2(Ω),

(9.2)

and where (𝐻1(Ω))𝑑 is the subspace of 𝐻1(Ω)𝑑 for which all components vanish on the boundary, and �̊�2(Ω) is
the subspace of 𝐿2(Ω) for which the integral of the function over the domain vanishes. This last constraint was
introduced to remove the null space of constant pressure functions from the system. This constraint introduces
a little complexity into the implementation. So instead, we will redefine �̊�2(Ω) to be the subspace of 𝐿2(Ω)
constrained to take the value 0 at some arbitrary but specified point. For example, one might choose to require the
pressure at the origin to vanish. This is also an effective way to remove the nullspace, but it is simpler to implement.
We will implement the two-dimensional case (𝑑 = 2) and, for simplicity, we will assume 𝜇 = 1.

The colon (:) indicates an inner product so:

𝜖(𝑢) : 𝜖(𝑣) =
∑︁
𝛼𝛽

𝜖(𝑢)𝛼𝛽𝜖(𝑣)𝛼𝛽 (9.3)

In choosing a finite element subspace of 𝑉 × 𝑄 we will similarly choose a simpler to implement, yet still stable,
space than was chosen in Analysis Section 6. The space we will use is the lowest order Taylor-Hood space [TH73].
This has:

𝑉 ℎ = 𝑃2(Ω)2

𝑄ℎ = 𝑃1(Ω)
(9.4)

i.e. quadratic velocity and linear pressure on each cell. We note that 𝑄ℎ ∈ 𝐻1(Ω) but since 𝐻1(Ω) ⊂ 𝐿2(Ω),
this is not itself a problem. We will impose further constraints on the spaces in the form of Dirichlet boundary
conditions to ensure that the solutions found are in fact in 𝑉 ×𝑄.
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In addition to the finite element functionality we have already implemented, there are two fur-
ther challenges we need to address. First, the implementation of the vector-valued space
𝑃2(Ω)2‘𝑚𝑎𝑛𝑑𝑠𝑒𝑐𝑜𝑛𝑑, 𝑡ℎ𝑒𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑜𝑓𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠𝑎𝑛𝑑𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝑜𝑣𝑒𝑟𝑡ℎ𝑒𝑚𝑖𝑥𝑒𝑑𝑠𝑝𝑎𝑐𝑒‘𝑉 ℎ×𝑄ℎ.

9.1 Vector-valued finite elements

Consider the local representation of 𝑃2(Ω)2 on one element. The scalar 𝑃2 element on one triangle has 6 nodes,
one at each vertex and one at each edge. If we write {Φ𝑖}5𝑖=0 for the scalar basis, then a basis {Φ𝑖}11𝑖=0 for the
vector-valued space is given by:

Φ𝑖(𝑋) = Φ𝑖 // 2(𝑋) e𝑖%2 (9.5)

where // is the integer division operator, % is the modulus operator, and e0, e1 is the standard basis for R2. That
is to say, we interleave 𝑥 and 𝑦 component basis functions.
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Fig. 9.1: The local numbering of vector degrees of freedom.

We can practically implement vector function spaces by implementing a new class fe_utils.finite_elements.
VectorFiniteElement. The constructor (__init__()) of this new class should take a FiniteElement and
construct the corresponding vector element. For current purposes we can assume that the vector element will
always have a vector dimension equal to the element geometric and topological dimension (i.e. 2 if the element is
defined on a triangle). We’ll refer to this dimension as 𝑑.

9.1.1 Implementing VectorFiniteElement

VectorFiniteElement needs to implement as far as possible the same interface as FiniteElement. Let’s think
about how to do that.

cell, degree
Same as for the input FiniteElement.

entity_nodes
There will be twice as many nodes, and the node ordering is such that each node is replaced by a 𝑑-tuple.
For example the scalar triangle P1 entity-node list is:

{
0 : {0 : [0], 1 : [1], 2 : [2]},
1 : {0 : [], 1 : [], 2 : []},
2 : {0 : []}

}

The vector version is achieved by looping over the scalar version and returning a mapping with the pair
2𝑛, 2(𝑛+ 1) in place of node 𝑛:
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{
0 : {0 : [0, 1], 1 : [2, 3], 2 : [4, 5]},
1 : {0 : [], 1 : [], 2 : []},
2 : {0 : []}

}

nodes_per_entity:
Each entry will be 𝑑 times that on the input FiniteElement.

9.1.2 Tabulation

In order to tabulate the element, we can use (9.5). We first call the tabulate method from the input FiniteElement,
and we use this and (9.5) to produce the array to return. Notice that the array will both have a basis functions
dimension which is 𝑑 times longer than the input element, and will also have an extra dimension to account for the
multiplication by e𝑖% 𝑑. This means that the tabulation array with grad=False will now be rank 3, and that with
grad=True will be rank 4. Make sure you keep track of which rank is which! The VectorFiniteElement will
need to keep a reference to the input FiniteElement in order to facilitate tabulation.

9.1.3 Nodes

Even though we didn’t need the nodes of the VectorFiniteElement to construct its basis, we will need them to
implement interpolation. In Definition 2.2 we learned that the nodes of a finite element are related to the corre-
sponding nodal basis by:

Φ*
𝑖 (Φ𝑗) = 𝛿𝑖𝑗 (9.6)

From (9.5) and assuming, as we have throughout the course, that the scalar finite element has point evaluation
nodes given by:

Φ𝑖(𝑣) = 𝑣(𝑋𝑖), (9.7)

it follows that:

Φ*
𝑖 (𝑣) = Φ*

𝑖 // 𝑑(e𝑖% 𝑑 · 𝑣)
= e𝑖% 𝑑 · 𝑣(𝑋𝑖 // 𝑑)

(9.8)

� Hint

To see that this is the correct nodal basis, choose 𝑣 = Φ𝑗 in (9.8) and substitute (9.5) for Φ𝑗 .

This means that the correct VectorFiniteElement.nodes attribute is the list of nodal points from the input
FiniteElement but with each point repeated 𝑑 times. It will also be necessary to add another attribute, perhaps
node_weights which is a rank 2 array whose 𝑖-th row is the correct canonical basis vector to contract with the
function value at the 𝑖-th node (e𝑖% 𝑑).

9.2 Vector-valued function spaces

Assuming we correctly implement VectorFiniteElement, FunctionSpace should work out of the box. In
particular, the global numbering algorithm only depends on having a correct local numbering so this should work
unaltered.
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9.3 Functions in vector-valued spaces

The general form of a function in a vector-valued function space is:

𝑓 = 𝑓𝑖Φ𝑖(𝑋). (9.9)

That is to say, the basis functions are vector valued and their coefficients are still scalar. This means that if the
VectorFiniteElement had a correct entity-node list then the core functionality of the existing Function will
automatically be correct. In particular, the array of values will have the correct extent. However, interpolation and
plotting of vector valued fields will require some adjustment.

9.3.1 Interpolating into vector-valued spaces

Since the form of the nodes of a VectorFiniteElement is different from that of a scalar element, there will be
some changes required in the interpolate() method. Specifically:

self.values[fs.cell_nodes[c, :]] = [fn(x) for x in node_coords]

This line will need to take into account the dot product with the canonical basis from (9.8), which you have imple-
mented as VectorFiniteElement.node_weights. This change will need to be made conditional on the class
of finite element passed in, so that the code doesn’t break in the scalar element case.

9.3.2 Plotting functions in vector-valued spaces

The coloured surface plots that we’ve used thus far for two-dimensional scalar functions don’t extend easily to
vector quantities. Instead, a frequently used visualisation technique is the quiver plot. This draws a set of arrows
representing the function value at a set of points. For our purposes, the nodes of the function space in question
are a good choice of evaluation points. Listing 9.1 provides the code you will need. Notice that at line 3 we
interpolated the function 𝑓(𝑥) = 𝑥 into the function space in order to obtain a list of the global coordinates of the
node locations. At lines 6 and 7 we use what we know about the node ordering to recover vector values from the
list of basis function coefficients.

Listing 9.1: Code implementing quiver plots to visualise functions in vec-
tor function spaces. This code should be added to plot() immediately
after the definition of fs.

1 if isinstance(fs.element, VectorFiniteElement):
2 coords = Function(fs)
3 coords.interpolate(lambda x: x)
4 fig = plt.figure()
5 ax = fig.add_subplot()
6 x = coords.values.reshape(-1, 2)
7 v = self.values.reshape(-1, 2)
8 plt.quiver(x[:, 0], x[:, 1], v[:, 0], v[:, 1])
9 plt.show()

10 return

Once this code has been inserted, then running the code in Listing 9.2 will result in a plot rather like Fig. 9.2.

Listing 9.2: Creation of a vector function space, interpolation of a given
function into it, and subsequent plot creation.

1 from fe_utils import *
2 from math import cos, sin, pi
3

4 se = LagrangeElement(ReferenceTriangle, 2)
(continues on next page)

114 Chapter 9. Mixed problems



Numerical Methods for Variational Problems, Edition 2024.0

(continued from previous page)

5 ve = VectorFiniteElement(se)
6 m = UnitSquareMesh(10,10)
7 fs = FunctionSpace(m, ve)
8 f = Function(fs)
9 f.interpolate(lambda x: (2*pi*(1 - cos(2*pi*x[0]))*sin(2*pi*x[1]),

10 -2*pi*(1 - cos(2*pi*x[1]))*sin(2*pi*x[0])))
11 f.plot()

Fig. 9.2: The quiver plot resulting from Listing 9.2.

9.3.3 Solving vector-valued systems

Solving a finite element problem in a vector-valued space is essentially similar to the scalar problems you have
already solved. It does, nonetheless, provide a useful check on the correctness of your code before adding in the
additional complications of mixed systems. As a very simple example, consider computing vector-valued field
which is the gradient of a known function. For some suitable finite element space 𝑉 ⊂ 𝐻1(Ω)2 and 𝑓 : Ω → R,
find 𝑢 ∈ 𝑉 such that: ∫︁

Ω

𝑢 · 𝑣 d𝑥 =

∫︁
Ω

∇𝑓 · 𝑣 d𝑥 ∀𝑣 ∈ 𝑉. (9.10)

If 𝑓 is chosen such that ∇𝑓 ∈ 𝑉 then this projection is exact up to roundoff, and the following calculation should
result in a good approximation to zero:

𝑒 =

∫︁
Ω

(𝑢−∇𝑓) · (𝑢−∇𝑓) d𝑥 (9.11)

ò Note

The computations in this subsection are not required to complete the mastery exercise. They are, nonetheless,
strongly recommended as a mechanism for checking your implementation thus far.
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9.4 Mixed function spaces

The Stokes equations are defined over the mixed function space 𝑊 = 𝑉 × 𝑄. Here “mixed” simply means that
there are two solution variables, and therefore two solution spaces. Functions in 𝑊 are pairs (𝑢, 𝑝) where 𝑢 ∈ 𝑉
and 𝑝 ∈ 𝑄. If {𝜑𝑖}𝑚−1

𝑖=0 is a basis for 𝑉 and {𝜓𝑗}𝑛−1
𝑗=0 then a basis for 𝑊 is given by:

{𝜔𝑖}𝑚+𝑛−1
𝑖=0 = {(𝜑𝑖, 0)}𝑚−1

𝑖=0 ∪ {(0, 𝜓𝑗−𝑛)}𝑚+𝑛−1
𝑗=𝑚 . (9.12)

This in turn enables us to write 𝑤 ∈𝑊 in the form 𝑤 = 𝑤𝑖𝜔𝑖 as we would expect for a function in a finite element
space. The Cartesian product structure of the mixed space 𝑊 means that the first 𝑚 coefficients are simply the
coefficients of the 𝑉 basis functions, and the latter 𝑛 coefficients correspond to the 𝑄 basis functions. This means
that our full mixed finite element system is simply a linear system of block matrices and block vectors. If we
disregard boundary conditions, including the pressure constraint, this system has the following form:[︂

𝐴 𝐵T

𝐵 0

]︂ [︂
𝑈
𝑃

]︂
=

[︂
𝐹
0

]︂
(9.13)

where:

𝐴𝑖𝑗 = 𝑎(𝜑𝑗 , 𝜑𝑖),

𝐵𝑖𝑗 = 𝑏(𝜑𝑗 , 𝜓𝑖),

𝐹𝑖 =

∫︁
Ω

𝑓 · 𝑣 𝑑 𝑥,

𝑈𝑖 = 𝑢𝑖 = 𝑤𝑖,

𝑃𝑖 = 𝑝𝑖 = 𝑤𝑖+𝑚.

(9.14)

This means that the assembly of the mixed problem comes down to the assembly of several finite operators of
the form that we have already encountered. These then need to be assembled into the full block matrix and right
hand side vector, before the system is solved and the resulting solution vector pulled appart and interpreted as the
coefficients of 𝑢 and 𝑝. Observe in (9.14) that the order of the indices 𝑖 and 𝑗 is reversed on the right hand side
of the equations. This reflects the differing conventions for matrix indices and bilinear form arguments, and is a
source of unending confusion in this field.

9.4.1 Assembling block systems

The procedure for assembling the individual blocks of the block matrix and the block vectors is the one you are
familiar with, but we will need to do something new to assemble the block structures. What is required differs
slightly between the matrix and the vectors.

In the case of the vectors, then it is sufficient to know that a slice into a numpy.ndarray returns a view on the
same memory as the full vector. This is most easily understood through an example:

In [1]: import numpy as np

In [2]: a = np.zeros(10)

In [3]: b = a[:5]

In [4]: b[2] = 1

In [5]: a
Out[5]: array([0., 0., 1., 0., 0., 0., 0., 0., 0., 0.])

This means that one can first create a full vector of length 𝑛+𝑚 and then slice it to create subvectors that can be
used for assembly.

Conversely, scipy.sparse provides the bmat() function which will stitch together a larger sparse matrix from
blocks. In order to have the full indexing options you are likely to want for imposing the boundary conditions, you
will probably want to specify that the resulting matrix is in "lil" format.
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9.4.2 Boundary conditions

The imposition of the constraint in (𝐻1(Ω))2 that solutions vanish on the boundary is a Dirichlet condition of the
type that you have encountered before. Observe that the condition changes the test space, which affects whole rows
of the block system, so you will want to impose the boundary condition after assembling the block matrix. You
will also need to ensure that the constraint is applied to both the 𝑥 and 𝑦 components of the space.

The imposition of the constraint in �̊�2(Ω) that the solution is zero at some prescribed point can be achieved by
selecting an arbitrary basis function and applying a zero Dirichlet condition for that degree of freedom. In this
regard we can observe that there is nothing about the implementation of Dirichlet conditions that constrains them to
lie on the boundary. Rather, they should be understood as specifying a subspace on which the solution is prescribed
rather than solved for. In this particular case, that subspace is one-dimensional.

9.4.3 Solving the matrix system

The block matrix system that you eventually produce will be larger than many of those we have previously en-
countered, and will have non-zero entries further from the diagonal. This can cause the matrix solver to become
expensive in both time and memory. Fortunately, scipy.sparse.linalg now incorporates an interface to Su-
perLU, which is a high-performance direct sparse solver. The recommended solution strategy is therefore:

1. Convert your block matrix to scipy.sparse.csc_matrix, which is the format that SuperLU requires.

2. Factorise the matrix using scipy.sparse.linalg.splu().

3. Use the resulting SuperLU object to finally solve the system.

9.4.4 Computing the error

We will wish to compute the convergence of our solution in the 𝐿2 norm. For 𝑤 ∈𝑊 , this is given by:

‖𝑤‖𝐿2 =

√︃∫︁
Ω

𝑤 · 𝑤 dx (9.15)

When we expand this in terms of the basis of 𝑊 , it will be useful to note that basis functions from the different
component spaces are orthogonal. That is to say:

(𝜑, 0) · (0, 𝜓) = 0 ∀𝜑 ∈ 𝑉, 𝜓 ∈ 𝑄. (9.16)

The direct result of this is that if 𝑤 = (𝑢, 𝑝) then:

‖𝑤‖2𝐿2 = ‖𝑢‖2𝐿2 + ‖𝑝‖2𝐿2 . (9.17)

9.5 Manufacturing a solution to the Stokes equations

As previously, we will wish to check our code using the method of manufactured solutions. The Stokes equations
represent a form of incompressible fluid mechanics, so it is usually preferable to select a target solution for which
∇ · 𝑢 = 0. The straightforward way to do this is to choose a scalar field 𝛾 : Ω → R to use as a streamfunction. We
can then define 𝑢 = ∇⊥𝛾 and rely on the vector calculus identity ∇ ·∇⊥𝛾 = 0 to guarantee that the velocity field
is divergence-free. We also need to ensure that 𝑢 satisfies the boundary conditions, which amounts to choosing 𝛾
such that its gradient vanishes on the domain boundary. The following function is a suitable choice on a unit square
domain:

𝛾(𝑥, 𝑦) =
(︀
1− cos(2𝜋𝑥)

)︀(︀
1− cos(2𝜋𝑦)

)︀
(9.18)
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9.6 Implementing the Stokes problem

Exercise 9.1 The goal of this exercise is to implement a solver for the Stokes equations, on a unit square. Implement
solve_mastery() so that it solves (9.1) using the forcing function derived from (9.18).

Your full solution should:

1. Implement VectorFiniteElement.

2. Make the consequential changes to Function to enable values to be interpolated into vector-valued func-
tions, and to create quiver plots.

3. Assemble and solve the required mixed system.

4. Compute the 𝐿2 error of the mixed solution from the analytic solution.

A convergence test for your code is provided in test/test_13_mastery_convergence.py. In order to be
compatible with this code, your implementation of solve_mastery() should return its results as a tuple of the
form (u, p), error. This is a slight change from the comment in the code which takes into account that the
problem is mixed. The obvious consequential change will be needed at the end of fe_utils.solvers.mastery.
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TEN

FE_UTILS PACKAGE

10.1 Subpackages

10.1.1 fe_utils.scripts package

Submodules

fe_utils.scripts.plot_function_space_nodes module

fe_utils.scripts.plot_function_space_nodes.plot_function_space_nodes()

fe_utils.scripts.plot_interpolate_lagrange module

fe_utils.scripts.plot_interpolate_lagrange.plot_interpolate_lagrange()

fe_utils.scripts.plot_lagrange_basis_functions module

fe_utils.scripts.plot_lagrange_basis_functions.plot_lagrange_basis_functions()

fe_utils.scripts.plot_lagrange_points module

fe_utils.scripts.plot_lagrange_points.plot_lagrange_points()

fe_utils.scripts.plot_mesh module

fe_utils.scripts.plot_mesh.plot_mesh()

fe_utils.scripts.plot_sin_function module

fe_utils.scripts.plot_sin_function.plot_sin_function()
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Module contents

10.1.2 fe_utils.solvers package

Submodules

fe_utils.solvers.helmholtz module

Solve a model helmholtz problem using the finite element method. If run as a script, the result is plotted. This file
can also be imported as a module and convergence tests run on the solver.

fe_utils.solvers.helmholtz.assemble(fs, f )
Assemble the finite element system for the Helmholtz problem given the function space in which to solve
and the right hand side function.

fe_utils.solvers.helmholtz.solve_helmholtz(degree, resolution, analytic=False, return_error=False)
Solve a model Helmholtz problem on a unit square mesh with resolution elements in each direction, using
equispaced Lagrange elements of degree degree.

fe_utils.solvers.mastery module

Solve a nonlinear problem using the finite element method. If run as a script, the result is plotted. This file can
also be imported as a module and convergence tests run on the solver.

fe_utils.solvers.mastery.solve_mastery(resolution, analytic=False, return_error=False)
This function should solve the mastery problem with the given resolution. It should return both the solution
Function and the 𝐿2 error in the solution.

If analytic is True then it should not solve the equation but instead return the analytic solution. If
return_error is true then the difference between the analytic solution and the numerical solution should
be returned in place of the solution.

fe_utils.solvers.poisson module

Solve a model Poisson problem with Dirichlet boundary conditions.

If run as a script, the result is plotted. This file can also be imported as a module and convergence tests run on the
solver.

fe_utils.solvers.poisson.assemble(fs, f )
Assemble the finite element system for the Poisson problem given the function space in which to solve and
the right hand side function.

fe_utils.solvers.poisson.boundary_nodes(fs)
Find the list of boundary nodes in fs. This is a unit-square-specific solution. A more elegant solution would
employ the mesh topology and numbering.

fe_utils.solvers.poisson.solve_poisson(degree, resolution, analytic=False, return_error=False)
Solve a model Poisson problem on a unit square mesh with resolution elements in each direction, using
equispaced Lagrange elements of degree degree.
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Module contents

10.2 Submodules

10.3 fe_utils.finite_elements module

class fe_utils.finite_elements.FiniteElement(cell, degree, nodes, entity_nodes=None)
Bases: object

A finite element defined over cell.

Parameters

• cell – the ReferenceCell over which the element is defined.

• degree – the polynomial degree of the element. We assume the element spans the
complete polynomial space.

• nodes – a list of coordinate tuples corresponding to point evaluation node locations on
the element.

• entity_nodes – a dictionary of dictionaries such that entity_nodes[d][i] is the list of
nodes associated with entity (d, i) of dimension d and index i.

Most of the implementation of this class is left as exercises.

cell

The ReferenceCell over which the element is defined.

degree

The polynomial degree of the element. We assume the element spans the complete polynomial space.

entity_nodes

A dictionary of dictionaries such that entity_nodes[d][i] is the list of nodes associated with entity
(d, i).

interpolate(fn)
Interpolate fn onto this finite element by evaluating it at each of the nodes.

Parameters
fn – A function fn(X) which takes a coordinate vector and returns a scalar value.

Returns
A vector containing the value of fn at each node of this element.

The implementation of this method is left as an exercise.

node_count

The number of nodes in this element.

nodes

The list of coordinate tuples corresponding to the nodes of the element.

nodes_per_entity

nodes_per_entity[d] is the number of entities associated with an entity of dimension d.

tabulate(points, grad=False)
Evaluate the basis functions of this finite element at the points provided.

Parameters

• points – a list of coordinate tuples at which to tabulate the basis.

• grad – whether to return the tabulation of the basis or the tabulation of the gradient of
the basis.
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Result
an array containing the value of each basis function at each point. If grad is True, the
gradient vector of each basis vector at each point is returned as a rank 3 array. The shape
of the array is (points, nodes) if grad is False and (points, nodes, dim) if grad is True.

The implementation of this method is left as an exercise.

class fe_utils.finite_elements.LagrangeElement(cell, degree)
Bases: FiniteElement

An equispaced Lagrange finite element.

Parameters

• cell – the ReferenceCell over which the element is defined.

• degree – the polynomial degree of the element. We assume the element spans the
complete polynomial space.

The implementation of this class is left as an exercise.

fe_utils.finite_elements.lagrange_points(cell, degree)
Construct the locations of the equispaced Lagrange nodes on cell.

Parameters

• cell – the ReferenceCell

• degree – the degree of polynomials for which to construct nodes.

Returns
a rank 2 array whose rows are the coordinates of the nodes.

The implementation of this function is left as an exercise.

fe_utils.finite_elements.vandermonde_matrix(cell, degree, points, grad=False)
Construct the generalised Vandermonde matrix for polynomials of the specified degree on the cell provided.

Parameters

• cell – the ReferenceCell

• degree – the degree of polynomials for which to construct the matrix.

• points – a list of coordinate tuples corresponding to the points.

• grad – whether to evaluate the Vandermonde matrix or its gradient.

Returns
the generalised Vandermonde matrix

The implementation of this function is left as an exercise.

10.4 fe_utils.function_spaces module

class fe_utils.function_spaces.Function(function_space, name=None)
Bases: object

A function in a finite element space. The main role of this object is to store the basis function coefficients
associated with the nodes of the underlying function space.

Parameters

• function_space – The FunctionSpace in which this Function lives.

• name – An optional label for this Function which will be used in output and is useful
for debugging.
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function_space

The FunctionSpace in which this Function lives.

integrate()

Integrate this Function over the domain.

Result
The integral (a scalar).

interpolate(fn)
Interpolate a given Python function onto this finite element Function.

Parameters
fn – A function fn(X) which takes a coordinate vector and returns a scalar value.

name

The (optional) name of this Function

plot(subdivisions=None)
Plot the value of this Function. This is quite a low performance plotting routine so it will perform
poorly on larger meshes, but it has the advantage of supporting higher order function spaces than many
widely available libraries.

Parameters
subdivisions – The number of points in each direction to use in representing each
element. The default is 2𝑑 + 1 where 𝑑 is the degree of the FunctionSpace. Higher
values produce prettier plots which render more slowly!

values

The basis function coefficient values for this Function

class fe_utils.function_spaces.FunctionSpace(mesh, element)
Bases: object

A finite element space.

Parameters

• mesh – The Mesh on which this space is built.

• element – The FiniteElement of this space.

Most of the implementation of this class is left as an exercise.

cell_nodes

The global cell node list. This is a two-dimensional array in which each row lists the global nodes
incident to the corresponding cell. The implementation of this member is left as an exercise

element

The FiniteElement of this space.

mesh

The Mesh on which this space is built.

node_count

The total number of nodes in the function space.
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10.5 fe_utils.mesh module

class fe_utils.mesh.Mesh(vertex_coords, cell_vertices)
Bases: object

A one or two dimensional mesh composed of intervals or triangles respectively.

Parameters

• vertex_coords – a vertex_count x dim array of the coordinates of the vertices in the
mesh.

• cell_vertices – a cell_count x (dim+1) array of the indices of the vertices of which
each cell is made up.

adjacency(dim1, dim2)
Return the set of dim2 entities adjacent to each dim1 entity. For example if dim1==2 and dim2==1
then return the list of edges (1D entities) adjacent to each triangle (2D entity).

The return value is a rank 2 numpy.array such that adjacency(dim1, dim2)[e1, :] is the list of
dim2 entities adjacent to entity (dim1, e1).

This operation is only defined where self.dim >= dim1 > dim2.

This method is simply a more systematic way of accessing edge_vertices, cell_edges and
cell_vertices.

cell

The ReferenceCell of which this Mesh is composed.

cell_edges

The indices of the edges incident to each cell (only for 2D meshes).

cell_vertices

The indices of the vertices incident to cell.

dim

The geometric and topological dimension of the mesh. Immersed manifolds are not supported.

edge_vertices

The indices of the vertices incident to edge (only for 2D meshes).

entity_counts

The number of entities of each dimension in the mesh. So entity_counts[0] is the number of
vertices in the mesh.

jacobian(c)
Return the Jacobian matrix for the specified cell.

Parameters
c – The number of the cell for which to return the Jacobian.

Result
The Jacobian for cell c.

vertex_coords

The coordinates of all the vertices in the mesh.

class fe_utils.mesh.UnitIntervalMesh(nx)
Bases: Mesh

A mesh of the unit interval.

Parameters
nx – The number of cells.
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class fe_utils.mesh.UnitSquareMesh(nx, ny)
Bases: Mesh

A triangulated Mesh of the unit square.

Parameters

• nx – The number of cells in the x direction.

• ny – The number of cells in the y direction.

10.6 fe_utils.quadrature module

class fe_utils.quadrature.QuadratureRule(cell, degree, points, weights)
Bases: object

A quadrature rule implementing integration of the reference cell provided.

Parameters

• cell – the ReferenceCell over which this quadrature rule is defined.

• degree – the degree of precision of this quadrature rule.

Points
a list of the position vectors of the quadrature points.

Weights
the corresponding vector of quadrature weights.

cell

The ReferenceCell over which this quadrature rule is defined.

degree

The degree of precision of the quadrature rule.

integrate(function)
Integrate the function provided using this quadrature rule.

Parameters
function – A Python function taking a position vector as its single argument and re-
turning a scalar value.

The implementation of this method is left as an exercise.

points

Two dimensional array, the rows of which form the position vectors of the quadrature points.

weights

The corresponding array of quadrature weights.

fe_utils.quadrature.gauss_quadrature(cell, degree)
Return a Gauss-Legendre QuadratureRule.

Parameters

• cell – the ReferenceCell over which this quadrature rule is defined.

• degree – the degree of precision of this quadrature rule.
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10.7 fe_utils.reference_elements module

class fe_utils.reference_elements.ReferenceCell(vertices, topology, name)
Bases: object

An object storing the geometry and topology of the reference cell.

Parameters

• vertices – a list of coordinate vectors corresponding to the coordinates of the vertices
of the cell.

• topology – a dictionary of dictionaries such that topology[d][i] is the list of vertices
incident to the i-th entity of dimension d.

dim

The geometric and topological dimension of the reference cell.

entity_counts

The number of entities of each dimension.

point_in_entity(x, e)
Return true if the point x lies on the entity e.

Parameters

• x – The coordinate vector of the point.

• e – The (d, i) pair describing the entity of dimension d and index i.

topology

The vertices making up each topological entity of the reference cell.

vertices

The list of coordinate veritices of the reference cell.

fe_utils.reference_elements.ReferenceInterval = ReferenceInterval

A ReferenceCell storing the geometry and topology of the interval [0, 1].

fe_utils.reference_elements.ReferenceTriangle = ReferenceTriangle

A ReferenceCell storing the geometry and topology of the triangle with vertices [[0., 0.], [1., 0.], [0., 1.]].

10.8 fe_utils.utils module

fe_utils.utils.errornorm(f1, f2)
Calculate the L^2 norm of the difference between f1 and f2.

10.9 Module contents
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